
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 4; April -2015

 www.ijcrd.com Page 572

Reverse Engineering of UML sequence diagram for the

Abstraction of Requirements

Dr. R N Kulkarni
1
, Singri Swathi

2
, Afsana H

3
, Soumya N M

4
 , Heena Kousar

5

1
Professor ,

2,3,4,5,
 B.E. Final Year ,

 1,2,3,4,5
Dept of CSE,BITM Bellary, India

Abstract: Many modern software design methods have

been developed to improve the reusability and maintainability

of software and to reduce the time required for the

maintenance and development operations, but many

companies have old or legacy software systems, these

companies spend a lot of money to maintain their old systems.

These systems cannot be replaced by new systems so easily

because they consist of lot business information which is

accumulated over the years, and also there is no proper design

information of the application is available.

In this paper, we are proposing an automatic tool for

the abstraction of requirements from the input UML sequence

diagram. The proposed tool abstracts the UML sequence

diagram by parsing the UML sequence diagram and then the

messages are abstracted and stored as scenarios which are

then translated into requirements.

Keywords: Reverse engineering, UML sequence

diagram, DOM parser, Abstraction, Scenarios, Requirements,

XML

1. INTRODUCTION
Reverse engineering, also called as back engineering, is

the process of extracting knowledge or design information

from anything man-made and re-producing it or reproducing

anything based on the extracted information. Reverse

engineering is a process of examination only: the software

system under consideration is not modified. It can also be

seen as "going backwards through the development cycle".

In reverse engineering the process is often tedious but

necessary in order to study the specific technology or device.

In system programming, reverse engineering is often done

because the documentation of the particular system has never

been written or the person who developed the system is no

longer working in the company. We use this concept to

introduce an automatic tool for retrieval of requirements of a

system from the UML sequence diagram.

The purpose of proposing this tool is to be able to recover the

system requirements of any system due to the cause that the

system does not have the necessary documents. Documenting

the process involved in developing the system is important. In

many organizations, twenty percent of system development

cost goes to documenting the system. In software

development life cycle (SDLC), documenting the system

requirements analysis ends with a system requirements

document (SRD). SRD is important in order to develop a

system. It shows the system specification before a developer

would be able to develop the system. Once the system

demonstrates faults after design phase, the SRD can be used

as a reference for identifying errors of the system

requirements. This is a difficult process considering the large

sequence diagrams. Therefore by having a tool that would be

able to retrieve the system requirements back from the UML

sequence diagrams would be an added advantage to the

software developers of any system application.

2. RELATED WORK
Ashalatha Nayak et al., [1] have proposed an approach of

synthesizing test data from the information embedded in

model elements such as class diagrams, sequence diagrams

and OCL constraints. Scenarios derived from the sequence

diagrams describe the functionality of a system under

development in terms of its behavioral descriptions. In their

context of system testing, scenarios representing an abstract

level of test cases need to be augmented with test data. A SCG

is a directed graph which is obtained by integrating the

necessary information from a class diagram, OCL constraints

and a sequence diagram. The idea was to express the

underlying control flow information involved in a sequence

diagram as a directed graph. The sequence diagram based

coverage criteria were used to generate a set of scenarios

which are to be covered during testing. Here, SCG graph is

used, which requires more processing.

Philip Samuel et al., [6] have implemented a method for

generating test cases automatically from UML sequence

diagrams in a prototype tool named UTG. Here, UTG stands

for UML behavioral Test case Generator. UTG has been

implemented using Java and can easily integrate with any

UML CASE tools like MagicDraw UML [4] that supports

XML (Extensible Markup Language) format. Since UTG

takes UML models in XML format as input, UTG is

independent of any specific CASE tool. They have used the

tool with several UML designs. In our implementation, we

make use of XML format to represent UML sequence

diagram as it is easier to understand and it also represents all

aspects of sequence diagram.

Manar H. Alalfi et at.,[3] presented an approach and tool

named PHP2XMI to automatically instrument dynamic web

applications using source transformation technology, and to

reverse engineer a UML sequence diagram from the execution

traces generated by the resulting instrumentation. PHP2XMI

automatically generates XMI sequence diagram files which

can be visualized directly in any UML toolset.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 4; April -2015

 www.ijcrd.com Page 573

The approaches on generating test cases [6] or test data [1]

from sequence diagrams and on extracting sequence diagrams

from execution traces [3] were proposed. A novel

methodology that uses the concept of slicing UML diagrams

using model based slicing technique has been proposed [8].

But there is not such approach proposed for abstracting

requirements from sequence diagram. Hence our motivation is

to build a tool which abstracts requirements from the given

sequence diagram.

3. TERMINOLOGIES
3.1 Reverse Engineering:

The reverse engineering is the process of analyzing the

subject system with two goals:

 -To identify the systems components and their

interrelationships

- To create representations of the system in another form at a

higher abstraction level.

3.2 UML:

The Unified Modeling Language (UML) is a general-purpose

modeling language in the field of software engineering, which

is designed to provide a standard way to visualize the design

of a system.

3.3 Sequence Diagram:

A Sequence diagram is an interaction diagram that shows how

processes operate with one another and what is their order.

3.4 Scenario:

-A scenario is a description of a person‟s interaction with a

system.

-Scenarios help focus design efforts on the user‟s

requirements, which are distinct from technical or business

requirements.

-Scenarios may be related to „use cases‟, which describe

interactions at a technical level

3.5 Requirements:

These are prerequisites for the system to work as intended.

3.6 Restructuring:
Restructuring is the transformation from one representation

form to another at the same abstraction level. The

transformation preserves the external behavior of the system.

Restructuring here is used in implementation stage to transform

code from an unstructured form to a structured form [7].

4. PROPOSED METHODOLOGY
We are proposing an automated tool to reverse engineer the

UML sequence diagrams for abstraction of requirements. The

following steps to be followed to abstract requirements from

UML sequence diagram

Algorithm

Input: UML Sequence diagram

Output: Sequence of requirements

1. [Input / Draw the UML Diagram]

1.1 Draw UML sequence diagram using any CASE

tools like Visual Paradigm or MagicDraw or

Rational Rose

2. [Restructuring]

2.1 Scan the sequence diagram from left to right and

top to bottom

If a message is not having arrow mark

Then

 Insert proper arrow

Else

If Message name is not present

Then

 Insert proper message name

End if

End if

2.2 Align each message in a time order

3. [Store the Entire UML sequence diagram]

3.1 Save the UML sequence diagram in Visual

Paradigm with .vpp extension.

4. [Export the Sequence diagram into its equivalent XML

file]

4.1 Visual paradigm for UML 12.0 version provides

the in-built functionality to export the diagrams

into XML format.

5. [Parse the XML file]

5.1 Java API DOM is used to parse the XML code file

generated in step 4.

5.2 DOM parser uses the function

DocumentBuilderFactory() to create the instance

of the class to parse the file.

5.3 DOM parser will generate a txt file having

information regarding object name and its

identifier. This file also contains the information

related to all the messages and the objects among

which the message is floating.

5.4 All the information generated by parser will be

stored in separate .txt file.

6. [Extract scenarios]

6.1 Read .txt file created in step 5 and extract the

messages, objects identifier, message type,

message to & from information in sequential order

of messages.

7. [Convert Scenario to requirements]

7.1 Convert the extracted scenarios into requirements

by constructing English sentences.

5. CASE STUDY
Consider an example sequence diagram of System interacting

with user and database (see figure 5.1) to generate

requirements.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 4; April -2015

 www.ijcrd.com Page 574

Figure 5.1 UML Sequence Diagram

The sequence of requirements generated as shown in figure

5.2.

6. CONCLUSION
We have proposed a new method for the abstraction of

requirements from UML sequence diagram. And these

abstractions are carried out through a sequence of steps like

restructuring, parsing, abstraction of messages and storing

them in the form of scenarios and finally these scenarios into

the requirements. So we have tested the tool for its correctness

and completeness.

REFERENCES
[1] Ashalatha Nayak, Debasis Samanta: "Automatic Test Data

Synthesis using UML Sequence Diagrams", in Journal of

Object Technology, vol. 09, no. 2, March-April 2010, pp. 75-

04, http://www.jot.fm/issues/issue 2010 03/article2/

[2] Heumann J (2001) “Generating Test Cases from Use

cases, Rational Software, IBM”

[3] Manar H. Alalfi James R. Cordy Thomas R. Dean

“Automated Reverse Engineering of UML Sequence

Diagrams for Dynamic Web Applications”, School of

Computing, Queen‟s University, Kingston, Canada falalfi,

cordy, deang@cs.queensu.ca

[4] Mohd Hafeez Osman and Michel R.V Chaudron

“Correctness and Completeness of CASE Tools in Reverse

Engineering Source code into UML Model”, LIACS, Leiden

University Niels Bohrweg 1, 2333 CA Leiden, the

Netherlands {hosman,chaudron}@liacs.nl

[5] Musker D (1998) Reverse Engineering IBC Conference on

protecting and exploiting intellectual property in electronics

[6] Philip Samuel, Rajib Mall “A Novel Test Case Design

Technique Using Dynamic Slicing of UML Sequence

Diagrams”, in e-Informatica Software Engineering Journal,

Volume 2, Issue 1, 2008

[7] Dr. Shivanand M. Handigund & Rajkumar N. Kulkarni,

“An Ameliorated Methodology for the design of Object

Structures from legacy „C‟ Program” International Journal of

Computer Applications (0975- 8887),Volume 1, No. 13,

March 2010, Page No. 61-66.

[8] Singh et al., “Technique for Extracting Subpart from UML

Sequence Diagram “International Journal of Advanced

Research in Computer Science and Software Engineering

3(6), June - 2013, pp. 593-596

[9] Sommerville I (2007) Software Engineering, 8th edition,

Addison Wesley, England

Figure 5.2 Sequence of requirements

http://www.jot.fm/issues/issue%202010%2003/article2/
mailto:deang@cs.queensu.ca

