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ABSTRACT: 

Predictive Maintenance (PdM) is a data-driven strategy aimed at forecasting equipment failures 

before they occur, thereby reducing unplanned downtime and operational costs¹. This study 

investigates how structured preprocessing techniques can enhance the performance of machine 

learning (ML) models applied to industrial sensor data. Using the AI4I 2020 dataset⁵, which 

simulates real-world manufacturing scenarios, we evaluate the impact of outlier detection using 

Isolation Forest⁷, normalization via Z-score standardization², dimensionality reduction with Principal 

Component Analysis (PCA)³, and class balancing through SMOTE⁴. The performance of four 

classifiers—Random Forest⁶, SVM¹³, MLP¹⁴, and XGBoost⁸—was compared before and after 

preprocessing, with XGBoost achieving the best results (F1-score = 0.85, AUC = 0.92). Inspired by 

advancements in real-time IoT-integrated PdM systems¹, such as the deployment of ML and deep 

learning (DL) models on yarn machines using ThingSpeak™ for live fault detection, this work 

emphasizes the foundational role of offline preprocessing in ensuring high model accuracy. While those 

IoT-enabled systems demonstrated DL models with up to 96% accuracy in production 

environments¹, our focus is on developing robust data pipelines essential for achieving similar 

performance in future real-time deployments. The results validate that effective preprocessing 

significantly improves model reliability and provides a scalable foundation for smart manufacturing 

applications in Industry 4.0¹ ¹⁶. 
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1 Introduction 

In the era of Industry 4.0, data-driven solutions 

are crucial for improving operational efficiency, 

reliability, and cost-effectiveness in industrial 

systems¹. Cyber-physical systems and the 

Internet of Things (IoT) enable real- time data 

acquisition and intelligent decision-making¹.

 Predictive 

Maintenance (PdM), a key application, uses 

sensor data and artificial intelligence (AI) to 

detect anomalies and predict equipment 

failures², minimizing downtime, optimizing 

maintenance schedules, and ensuring 

continuous production. 

 

Unlike Run-to-Failure (R2F) and Preventive 

Maintenance (PvM), which are reactive or time-

based³, PdM applies Machine Learning (ML) 

and Deep Learning (DL) techniques²⁴ to 

monitor machinery continuously and forecast 

issues in advance. This approach reduces repair 

costs, extends asset life, and enhances safety 

and efficiency. Figure 1 shows the evolution from 

reactive to intelligent maintenance strategies. 
 

1. Maintenance strategy evolution hierarchy: From Run-

to-Failure to Proactive Maintenance. 

The success of PdM systems depends not 

only on the choice of learning algorithms 

but also on the quality and structure of the 

input data⁵. Industrial sensor data is often 

noisy, imbalanced, and high- dimensional, 

which can degrade the performance of even 

advanced ML models. Therefore, 

preprocessing— comprising outlier 

detection, normalization, dimensionality 

reduction, and class balancing—is a critical 

step for improving model learning and 

generalization⁶. 

This study evaluates the impact of a 

structured preprocessing pipeline on PdM 

performance using the AI4I 2020 dataset⁷, 

which simulates real- world industrial 

machine sensor readings. The applied steps 

include Isolation Forest for outlier removal, 

Z-score normalization, Principal 

Component Analysis (PCA), and SMOTE-

based class balancing. 

 

 Outlier Detection: Isolation Forest⁸ 

 Normalization: Z-score 

standardization⁹ 

 Dimensionality Reduction: Principal 

Component Analysis (PCA)¹⁰ 

 Class Balancing: Synthetic Minority

 Oversampling 

Technique (SMOTE)¹¹ 

 

These steps were followed by training 

multiple machine learning classifiers, 

including Random Forest (RF)¹², Support 

Vector Machine (SVM)¹³, Multi-Layer 

Perceptron (MLP)¹⁴, and Extreme Gradient 

Boosting (XGBoost)¹⁵. 



While this work focuses on offline model 

evaluation, it is inspired by the real-time PdM 

system proposed by Akyaz and Engin¹⁶, which 

employed IoT-based sensors to monitor vibration, 

energy, and temperature data on yarn machines. Their 

implementation, using an ESP32 microcontroller 

and the ThingSpeak™ cloud platform, achieved 

96% prediction accuracy with deep learning 

methods. Although our study is not yet deployed in 

a real-time environment, it establishes the 

preprocessing foundation required for integrating 

such intelligent PdM systems into industrial 

settings. 

 

In conclusion, the results demonstrate that a 

structured preprocessing pipeline can significantly 

enhance the accuracy and reliability of predictive 

models, thereby supporting the development of 

scalable, intelligent PdM solutions for smart 

manufacturing. 

2. State of the Art 

The adoption of Industry 4.0 technologies has

 transformed traditional 

manufacturing and maintenance strategies, 

emphasizing cyber-physical systems, IoT-based 

connectivity, and artificial intelligence (AI) in 

industrial environments¹². Predictive Maintenance 

(PdM) is a key application within this paradigm, 

enabling proactive fault detection through real-

time monitoring and data-driven decision-making¹². 

 

The increasing complexity of industrial 

equipment, coupled with the growing availability 

of sensor data, has facilitated the deployment of 

machine learning (ML) and deep learning (DL) 

models capable of predicting machine failures 

more accurately than traditional rule-based 

approaches. 

The adoption of Industry 4.0 technologies 

has fundamentally transformed traditional 

manufacturing and maintenance strategies, 

emphasizing cyber- physical systems, IoT-

based connectivity, and artificial intelligence 

(AI) in industrial settings¹². Predictive 

Maintenance (PdM) is one of the core 

applications emerging from this paradigm, 

offering proactive fault detection through 

real-time monitoring and data-driven 

decision-making¹². 

 

The growing complexity of industrial 

equipment, combined with the increased 

availability of sensor data, has enabled the 

implementation of machine learning (ML) 

and deep learning (DL) models that predict 

machine failures more accurately than 

traditional rule-based methods. 

 

A. Classification of Predictive 

Maintenance Systems 

 

PdM systems are typically categorized into 

three main approaches³: 

 

 Model-based: Relies on the physical 

modeling of equipment dynamics using 

mathematical and physical equations. 

 Knowledge-based: Uses expert 

knowledge and historical failure rules to 

detect anomalies or degradation. 

 Data-driven: Utilizes historical sensor data 

and ML algorithms to learn degradation 

patterns and predict failures. 



 

 

Among these, data-driven approaches are the 

most scalable and adaptable to diverse industrial 

conditions⁴. They rely on historical and live 

sensor data (e.g., vibration, temperature, 

pressure, energy consumption) to detect early 

signs of wear and predict the Remaining 

Useful Life (RUL) of components. 

 

Studies such as Paolanti et al.⁵ have 

demonstrated the effectiveness of data-driven 

PdM using ML models, where vibration and 

spindle current data from milling machines 

were analyzed using Random Forest (RF) 

models via Microsoft Azure ML. 

 

However, in textile and artificial yarn 

production, PdM applications remain limited. 

Elkateb et al.⁷ successfully implemented a 

PdM solution on a knitting machine using DT 

and AdaBoost, achieving a prediction accuracy 

of 92%. Similarly, Kumari et al.⁸ applied a 

neural network with two layers and 20 neurons 

on a melt- spinning machine, achieving an 

RMSE of 0.097, highlighting that deep learning is 

effective even in noisy and multivariate 

industrial data. 

These examples reinforce the importance of 

model selection, feature preprocessing, and 

domain-specific tuning when implementing 

PdM systems in real-world industrial 

environments. 

 

B. IoT-Driven Frameworks for Predictive 

Maintenance 

 

The Internet of Things (IoT) serves as the 

enabling infrastructure for real- time PdM, 

connecting edge devices such as sensors and 

microcontrollers to cloud platforms for data 

storage, visualization, and inference⁹. 

 

A typical IoT-based PdM architecture consists of: 

 Sensors and microcontrollers: e.g., ESP32, 

Raspberry Pi 

 Data transmission protocols: e.g., MQTT, 

HTTP 

 IoT platforms: e.g., ThingSpeak™, AWS IoT, 

Azure IoT 

 Machine learning engines: e.g., MATLAB 

Regression Learner, TensorFlow 

 Alert and visualization systems: e.g., web 

dashboards, email triggers 



For instance, Kumar et al.¹⁰ designed a SCADA-

integrated IoT system to monitor industrial 

devices and send early warnings using ML 

models. Li et al.¹ created an experimental setup 

to simulate fault injection and detection using an 

ML-based PdM architecture in a controlled 

Industry 4.0 environment. 

 

Sahasrabudhe et al.¹¹ demonstrated the value of 

ML-based PdM using MATLAB's Diagnostic 

Feature Designer, where RF regressors were 

trained on vibration and thermal data to estimate 

RUL with high precision. 

 

Additionally, Es-sakali et al.² reviewed the 

landscape of PdM algorithms and highlighted 

that Support Vector Machines (SVMs) and 

Artificial Neural Networks (ANNs) are widely 

used due to their effectiveness in capturing non- 

linear patterns in sensor data. However, they also 

noted that class imbalance, missing values, and 

unstructured noise in datasets require robust 

preprocessing techniques such as: 

 Outlier removal: Isolation Forest 

 Feature scaling: Z-score standardization 

  Dimensionality reduction: PCA 

 Resampling methods: SMOTE for class 

balancing 

 

Butte et al.¹² framed the PdM problem as both a 

classification task (predicting if a fault will occur) 

and a regression task (estimating RUL). They 

concluded that tree-based ensemble methods 

such as XGBoost and RF, along with DL models, 

offer high reliability for industrial fault 

prediction tasks. 

 
C. Relevance to Current Work 

This seminar project extends previous research 

by analyzing how preprocessing techniques—

Z-score normalization², Principal Component 

Analysis (PCA)³, and Synthetic Minority 

Oversampling Technique (SMOTE)⁴—affect 

the predictive performance of ML models on the 

AI4I 2020 industrial maintenance dataset⁵. A 

comparative evaluation was conducted using 

Random Forest (RF)⁶, Multi-Layer Perceptron 

(MLP)¹⁴, Extreme Gradient Boosting 

(XGBoost)⁸, and Support Vector Machine 

(SVM)¹³ classifiers under various 

preprocessing conditions. The findings aim to 

support the design of robust PdM pipelines 

and establish a foundation for future 

deployment in real-time, IoT-integrated 

predictive maintenance systems¹. 



III. DEVELOPED DATA ACQUISITION 
SYSTEM FOR PdM APPLICATION 

 

The integration of computer-aided Predictive 

Maintenance (PdM) systems into smart 

manufacturing has led to modular IoT-based 

components enabling real-time monitoring and 

analytics. 
 

This project uses the AI4I 2020 dataset⁵, which 

simulates industrial sensor data, including 

torque, rotational speed, air temperature, process 

temperature, and tool wear. These measurements 

form the basis for modeling equipment health and 

predicting failures. 

 

Key Characteristics: 

 Sensor Data Types: Continuous readings of 

rotational speed, torque, tool wear, air 

temperature, and process temperature. 

 Failure Type Flags: Binary indicators for 

TWF, HDF, PWF, OSF, and RNF. 

 Target Label: Machine failure status for 

supervised classification. 

 

This dataset emulates real-time industrial 

equipment output, where sensors on critical 

components monitor operational status, 

workload, and wear patterns. 

 

To ensure data quality, a preprocessing pipeline 

was applied comprising: 

 Outlier Detection: Isolation Forest⁶  

Normalization: Z-score² 

 Dimensionality Reduction: PCA³  

Class Balancing: SMOTE⁴ 

 

These steps convert raw sensor readings into 

refined inputs, enabling models to generalize 

effectively, reduce class imbalance bias, and 

maintain accuracy in noisy industrial 

environments. 

 

 

 

 

 

 

 

IV. PERFORMED TESTS ON THE 
COMPUTER-AIDED PdM SYSTEM 

To assess the performance of the developed 

computer-aided Predictive Maintenance (PdM) 

system, a series of classification tests were 

conducted using the AI4I 2020 dataset⁵ after 

applying structured preprocessing. 

 

1. Preprocessing Recap: 

 Outlier Detection: Isolation 

Forest⁶ 

 Feature Scaling: Z-score 

normalization² 

 Dimensionality Reduction: PCA 

(retaining 95% variance)³ 

 Class Balancing: SMOTE (~96:4 

imbalance addressed)⁴ 

 

2. Model Selection and Training:  

Random Forest (RF)⁶ 

 Support Vector Machine (SVM)²  

Multi-Layer Perceptron (MLP)² 

 Extreme Gradient Boosting (XGBoost)⁸ 

  Each model was trained on 80% of the 

dataset and tested on the remaining 

20%. 

img 3: System Flow Diagram 
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0.89 
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Evaluation Metrics: 

 

 F1 Score: Balances precision and recall. 

 ROC-AUC: Measures classification 

performance across thresholds. 

 Confusion Matrix: Shows true/false 

positives and negatives. 

 Feature Importance: Identifies key features 

(for Random Forest). 

 ROC Curve: Compares classifier 

performance visually. 

 

Model Performance Summary 
 

The XGBoost model consistently 

outperformed the other classifiers, achieving 

the highest F1-score and AUC, indicating 

superior predictive accuracy and robustness. 
 

 

 
 

Interpretation of Results 

 

The ROC curve comparison (Figure 6) clearly 

shows that XGBoost had the steepest and most 

separated curve, confirming superior 

classification capability. 

 

The confusion matrix (Figure 9) for XGBoost 

indicates high true positive and true negative rates, 

with minimal misclassification. 

 

The feature importance plot (Figure 7) for Random 

Forest shows that principal components derived 

via PCA contribute significantly to predictions. 

 

All models benefited substantially from 

structured preprocessing. Without these steps, 

model accuracy was considerably lower, as 

confirmed by earlier tests in the project. 



The tests confirm that the developed PdM 

system can accurately identify machine 

failures from sensor data. Among the evaluated 

models, XGBoost proved the most reliable, 

achieving the highest performance with an F1-

score of 0.85 and an AUC of 0.92. These 

results validate the effectiveness of the 

preprocessing pipeline and highlight the 

suitability of ensemble- based models for 

industrial fault prediction tasks. 

 

V. OPTIMIZATION OF THE 

COLLECTED DATA 

To improve machine failure prediction 

accuracy, the raw sensor data from the AI4I 2020 

dataset⁵ was processed through a structured 

preprocessing pipeline. This optimization 

addressed common industrial data issues such as 

noise, imbalance, and high dimensionality, 

transforming raw sensor values into clean, 

scaled, and balanced inputs for model training. 

 

Outlier Detection: 

 Industrial environments often generate 

sensor outliers due to anomalies or drift, 

which can distort model training. 

 

 Technique Used: Isolation Forest⁶ with a 

1% contamination rate was applied to 

detect and remove noisy instances. 

Features such as rotational speed, tool wear, 

and temperature varied in scale, which could 

mislead certain models such as SVM and 

MLP. To address this, Z-score normalization² 

was applied, scaling all features to a standard 

Gaussian distribution with a mean of 0 and a 

standard deviation of 1. 

 

Multicollinearity and redundant features can 

increase training time and raise the risk of 

overfitting. To mitigate these issues, 

Principal Component Analysis (PCA)³ was 

used to reduce the dimensionality of the 

dataset while retaining 95% of the original 

variance, improving model efficiency 

without compromising accuracy. 

 

4. Handling Class Imbalance 

 

The original dataset was highly imbalanced 

— around 96% of the samples belonged to 

the “non- failure” class, making failure 

prediction difficult for standard classifiers. 
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Technique Used: 

 

SMOTE (Synthetic Minority Over-sampling 

Technique)⁴ was applied to generate synthetic 

failure instances, ensuring balanced class 

distribution and preventing model bias toward the 

majority class. 

 

 

5. Post-PCA Feature Space Visualization 

 

To validate the effectiveness of PCA in 

separating classes, the dataset was projected onto 

its top two principal components and visualized 

in a two- dimensional plot. 

VI. EXPERIMENTAL RESULTS 

 
The optimized dataset was used to evaluate the 

performance of four supervised machine learning 

models — Random Forest, Support Vector 

Machine (SVM), Multi-Layer Perceptron (MLP), 

and XGBoost — for binary classification of 

machine failures. Each model was trained on 80% 

of the data and tested on the remaining 20%. 
 

1. Performance Metrics 

 

The performance was assessed using F1 Score and 

AUC (Area Under the ROC Curve). These 

metrics are ideal for imbalanced datasets, 

providing insight into model accuracy and 

sensitivity. 

 

 

2. ROC Curve Comparison 

 

The ROC curve illustrates each model’s ability to 

distinguish between failure and non-failure cases. 

XGBoost and Random Forest achieved the highest 

AUC scores (~0.99), indicating excellent 

classification performance with minimal false 

predictions. 



 

 
 

3. Random Forest Feature 
Importance 

 

Random Forest’s built-in feature importance 

revealed the most influential principal 

components contributing to model 

decisions. 

 

 

VII. DISCUSSION 

The study demonstrates that effective 

preprocessing has a significant impact on 

predictive maintenance model performance. 

Techniques such as Isolation Forest for 

outlier detection⁶, Z-score normalization²,

 PCA for 

dimensionality reduction³, and SMOTE for 

class rebalancing⁴ collectively improved data 

quality and enhanced model generalization. 

Among the evaluated classifiers, XGBoost and 

Random Forest consistently delivered superior 

performance, both achieving F1-scores and AUC 

values close to 0.99. These results support prior 

findings that ensemble-based models are highly 

effective for fault detection in noisy and 

imbalanced industrial datasets³⁶. Their high AUC 

values indicate strong discriminatory power 

between failure and non-failure cases, which is 

critical in PdM applications where early detection 

helps prevent downtime and economic loss⁵. 
 

It required longer training time and showed 

slight variance across runs, reinforcing that tree-

based methods offer better stability and 

deployment readiness in real-time systems³. 

Additionally, PCA³ reduced computational 

complexity and improved training efficiency 

without compromising accuracy, making it 

suitable for high-dimensional sensor data. 
 

VIII. CONCLUSION 

This paper proposed a scalable PdM system using 

the AI4I 2020 dataset⁵ and a preprocessing 

pipeline—Isolation Forest⁶, Z-score², PCA³, and 

SMOTE⁴—to address noise, imbalance, and high 

dimensionality. XGBoost⁸ and Random Forest⁶ 

achieved the best results (F1 = 0.85, AUC = 

0.92), with XGBoost showing a low false-

negative rate. 

 

The results show that robust preprocessing with 

ensemble models enhances prediction accuracy 

and supports Industry 4.0 objectives. 



Future Work 

 

Future research will focus on integrating real-time 

sensor data streams for continuous monitoring 

and adaptive model updates. Advanced deep 

learning architectures, such as LSTM networks 

and autoencoders, will be explored for sequence-

based anomaly detection. Additionally, 

implementing the system in an actual industrial 

environment will help validate performance 

under real- world operating conditions. 
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