
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 2; August - 2014

 www.ijcrd.com Page 7

A Machine Learning Approach for Anti-pattern

Detection

Meenakshi T.

Assistant Professor

Department of Computer Science

Government First Grade College

Vijayanagar, Bangalore,India

Abstract: Developers may induce anti-patterns

in their software frameworks due to time limit,

lack of understanding, communication, and so

on. Anti-patterns obstruct advancement and

maintenance activities by making the source

code more difficult to understand. Recognizing

anti-patterns in an entire software framework

may be infeasible due to the obliged parsing

time and of the consequent required manual

acceptance. Recognizing anti-patterns on subsets

of a framework could diminish costs, effort, and

resources. Scientists have proposed

methodologies to identify events of anti-patterns

in any case these methodologies have at present

a few confinements: they require extensive

knowledge of anti-patterns, they have

constrained precision and recall, and they cannot

be employed on subsets of frameworks. To

overcome these challenges a machine learning

based approach has been proposed to identify

anti-patterns. Indeed, through experimental

study, it is showed that the accuracy of proposed

technique is greater than other existing

approaches in detecting anti-patterns.

Keywords: Anti-patterns, precision, recall,

machine-learning approach.

I. Introduction

Software testability is a noteworthy property

of software quality that encourages testing

activities and decreases testing cost and

effort. The significance of software quality

lies in the intricacy and notoriety of the

software frameworks. Anti-patterns

contrarily influence the testability and

subsequently quality of the object oriented

frameworks. Anti-pattern classes oblige

much more prominent testability effort than

non anti-pattern classes. Their initial

recognition and revision is important to

comfort the improvement and support

process.

Anti-patterns are poor solutions to repeating

configuration and execution issues.

Researchers have performed empirical

studies to demonstrate that anti-patterns

make obstacles during project perception,

software development and maintenance

activities [1]. It is paramount to discover

anti-patterns at an early phase of software

development, to diminish the support costs.

Current anti-design identification

approaches as proposed by Marinescu [2],

Moha et al. [2] and Alikacem et al. [3] have

a few constraints, for example, they require

broad knowledge of anti-patterns, they have

restricted accuracy and recall and cannot be

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 2; August - 2014

 www.ijcrd.com Page 8

utilized on subsets of frameworks. These

limitations are overcome by utilizing

support vector machine.

Support vector machines (SVM) have been

employed in various fields, e.g.,

bioinformatics [42], data recovery [5]. It is

another solution for the classification

problems. We can apply SVM on subsets of

frameworks in light of the fact that it

considers framework classes each one in

turn, not collectively as rule based

methodologies do. In this paper, an SVM

based machine learning approach is used to

detect anti-pattern.

The remainder of the paper is as follows:

Section II presents related work on detecting

anti-patterns. In section III the proposed

work is presented. Section IV presents the

research question related to the current

work. Section V Presents the results of the

work and finally section VI concludes the

paper.

II. Related Work

Several research works have been carried

out to detect anti-patterns in the software

design. Moha et al. [6] presented a DSL

focused around set of rules (measurements,

connection between classes) that portrays

the character of every anti-pattern. They

characterized a platform for automatic

change of rule cards into identification

algorithms furthermore proposed a few

algorithms [7].

Jug et al. [8] extricate a formal data models

from the ORM determination of framework,

and create heuristics to find anti-patterns in

the data model. Their system can then

naturally propose solutions to redress the

data models. Maiga et.al [9] additionally

proposed SMURF. This methodology

additionally utilizes a machine learning

method (SVM) utilizing polynomial kernel

as a premise for identification; however it

considers the specialists' input. SMURF is

intended to work on both intra and inter

framework designs.

Sahraoui et al. [10] utilized search based

methods to recognize anti-patterns deducing

that the more the code digresses from great

practices, the more it is prone to be

susceptible against anti-patterns. Cortellessa

et al [11] examine different methodologies

of catching design level execution anti-

patterns utilizing software modeling and

outline change rules.

Tamayo et al [12] develop the project

dependency graph utilizing element data,

and join the data with the relating database

operations to distinguish execution

bottlenecks. Their system might additionally

be utilized to recognize issues identified

with grouping, SQL synchronization,

redundant SQL queries, and additional

operations.

III. SVM Based Detection Approach

SVM based approach uses a polynomial

kernel for detecting the anti-pattern

occurrences. It is based on linear classifier

and utilizes training data in order to train the

classifier. The SVM is utilized to detect

familiar anti-patterns like functional

decomposition, blob and spaghetti code. The

detection process is illustrated as follows:

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 2; August - 2014

 www.ijcrd.com Page 9

 Let DS={ Ci } where i=1,2,3,…n is

the set of classes of object oriented

system that comprises the training

data set.

 Ci, is marked as spaghetti (S) or not.

 SC is the set of classes where we

have to identify the spaghetti code.

In order to identify the spaghetti code in

SC, the following steps are followed:

Specifying Object Oriented Metrics:

The SVM takes the training dataset DS as

input. For each and every class in DS, the

object-oriented metrics is estimated which

will be utilized as an attribute yi in every

class present in the DS. Here, POM is used

to calculate the metrics.

Training the SVM:

The SVM is trained using the data set DS

and the metrics that are calculated. The

training set is defined as follows:

 where bi is either -1 or 1 representing

whether the class is spaghetti or not.

The intent of the training phase is to

discover a best hyper plane that separates

the classes into two groups, spaghetti or not-

spaghetti.

Constructing the data set and identifying

the anti-pattern occurrence:

The data set is built in such a way that it

identifies the anti-pattern as follows: For

every class in the system, the metrics are

calculated and the trained SVM classifier is

utilized to identify the occurrence of the

anti-patterns contained in the data set.

IV. Research Questions

1. How much is the accuracy of SVM

based approach, in terms of precision

and recall?

2. How many occurrences of anti-

pattern does the approach detects?

V. Results and Discussion

In this section, the results of empirical study

are presented. Table 1 shows the total

number of spaghetti code occurrences

detected by our approach. The SVM is

applied utilizing the trained data set of one

system such as X and detects the anti-pattern

on other system like Y.

System Total Occurrences

Azureus 47

Xerces 53

Total 100

Table 1 Total number of spaghetti

occurrences detected by proposed

approach

When applied on the whole system for

spaghetti code detection, the proposed

approach detected 100 occurrences of

spaghetti code. The results obtained shows

that the approach is considerably better than

other anti-pattern detection techniques.

Table 2 and 3 shows the precision and recall

for the proposed technique.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 2; August - 2014

 www.ijcrd.com Page 10

 Azureus Xerces

SC 83 85

FD 70 69

SAK 73 70

Table 3 : Precision Value

 Azureus Xerces

SC 80 78

FD 71 68

SAK 70 69

Table 4 : Recall Value

Threats to Validity

Internal Validity:

Threats to inside legitimacy concern the

reliance of the acquired results that rely on

upon the chosen anti-patterns and

frameworks. These dangers don't affect our

study in light of the fact that we utilized

well-known and delegate anti-patterns.

These anti-patterns likewise have been

utilized within past works. We additionally

utilized two open-source frameworks with

different sizes, which have been utilized by

past scientists.

Reliability Validity:

Reliability legitimacy dangers concern the

likelihood of duplicating the study

concerned. To mitigate this danger, we

utilized two open-source frameworks that

might be uninhibitedly downloaded from the

Internet. We endeavored to give all the

essential points of interest to recreate our

study.

VI. Conclusion

Anti-patterns are a certainty of designers'

life when creating software frameworks,

under the conditions predominating these

days: dissemination in time and space, time

pressure and intricacy. Anti-patterns

specifically block program cognizance and

subsequently have negative effect on both

advancement furthermore maintenance

exercises. It is observed, that current anti-

patterns detection methodologies have a few

confinements: they require broad knowledge

of anti-patterns, they have constrained

accuracy and recall, and they can't be used

on subsets of frameworks. To overcome

these restrictions, a novel methodology to

locate anti-patterns, taking into account

support vector machines (SVM), a machine

learning based approach is proposed. The

proposed approach performs better than

other approaches in detecting anti-patterns.

 VII. References

1. F. Khomh, M. D. Penta, and Y.-G.

Gu_eh_eneuc. An exploratory study

of the impact of antipatterns on class

change-and fault-proneness. Journal

of Empirical Software Engineering

(EMSE), 2011.

2. R. Marinescu. Detection strategies:

Metrics-based rules for detecting

design aws. In In Proceedings of the

IEEE 20
th

 International Conference

on Software Maintenance, pages

350{359. IEEE Computer Society

Press, 2004.

3. Naouel Moha, Y.-G. Gu_eh_eneuc,

L. Duchien, and A.-F. L. Meur.

DECOR: A method for the

speci_cation and detection of code

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 2; August - 2014

 www.ijcrd.com Page 11

and design smells. Transactions on

Software Engineering (TSE), 2009.

4. E. H. Alikacem and H. A. Sahraoui.

Detection d'anomalies utilisant un

langage de regle de qualit_e. In

LMO, pages 185-200. Hermes

Science Publications, 2006.

5. J. Bedo, C. Sanderson, and A.

Kowalczyk. An efficient alternative

to SVM based recursive feature

elimination with applications in

natural language processing and

bioinformatics.In A. Sattar and B.-h.

Kang, editors, AI 2006: Advances in

Artificial Intelligence, volume 4304

of Lecture Notes in Computer

Science, pages 170-180. Springer

Berlin Heidelberg,2006.

6. Z. Ye, J. X. Huang, and H. Lin.

Incorporating rich features to boost

information retrieval performance: A

SVM-regression based re-ranking

approach. Expert Syst. Appl.,

38:7569-7574,June 2011.

7. Moha, N., Guéhéneuc, Y. -G.,

Duchien, L., Meur, A. -F. L. 2010.

DECOR: a method for the

specification and detection of code

and design smells. IEEE

Transactions on Software

Engineering(2010a), vol. 36, no.1,

pp. 20–36.

8. Moha, N., Guéhéneuc, Y. -G., Meur,

A. -F. L., Duchien, L., Tiberghien,

A. 2010. From a domain analysis to

the specification and detection of

code and design smells. Formal

Aspects of Computing (FAC), vol.

22, no. 3-4, 2010b, pp. 345-361.

9. Jaideep Nijjar and Tevfik Bultan.

Data model property inference and

repair. In Proceedings of the 2013

International Symposium on

Software Testing and Analysis,

ISSTA ’13, pages 202–212, 2013.

10. Maiga, A. et al. 2012. SMURF: a

SVM based incremental anti-pattern

detection approach.In Proceedings of

the 19th Working Conference on

Reverse Engineering (WCRE). IEEE

Computer Society Press.

11. M. Kessentini, S. Vaucher, and H.

Sahraoui. Deviance from perfection

is a better criterion than closeness to

evil when identifying risky code. In

Proceedings of the IEEE/ACM

international conference on

Automated software

engineering,ASE '10, pages

113{122, New York, NY, USA,

2010. ACM.

12. Vittorio Cortellessa, Antinisca Di

Marco, and Catia Trubiani. Software

performance antipatterns: Modeling

and analysis. In Proceedings of the

12
th

 International Conference on

Formal Methods for the Design of

Computer, Communication, and

Software Systems: Formal Methods

for Model-driven Engineering,

SFM'12, pages 290-335, 2012.

