
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 6; December -2014

 www.ijcrd.com Page 129

AN APPROACH FOR IMPROVING ELASTICITY IN

CLOUD COMPUTING USING NEURAL NETWORK

APPROACH

Aparna Manikonda
1
, Poonam Tijare

2
, Shruthi K

3

 1,2,3 Department of Computer Science and Engineering, CMRIT, Bangalore,

India
1
 aparna.m@cmrit.ac.in

3
 shruthi.k@cmrit.ac.in

2
 poonam.v@cmrit.ac.in

Abstract - The main concern for improving elasticity in cloud

computing is how to handle the scheduling of tasks and

balancing the load in cloud network with high throughput, less

over head and response time there by efficient utilization of

resources. As a result, Dynamic approaches with the purpose of

scaling the tasks and resources efficiently have drawn attentions

of many research studies. Recently, there have been a strong

interest to use intelligent tools especially Neural Networks in

improving elasticity of cloud infrastructure , due to their simple

parallel distributed computation, distributed storage, data

robustness, auto-classification of tasks and load in cloud centers .

Dimensionality reduction and prediction of cloud data obtained

simply from the outputs of the neural-networks algorithms can

lead to lower communication costs and energy conservation. This

paper aims to present the most important possible application of

neural networks for improving elasticity in cloud computing.

Keywords— Cloud computing, SOM, Neural Networks,
Task Scheduling, Resource allocation, Load Balancing.

1.Introduction
Organizations are tired of mobilizing & committing large cap-ex that
tie up cash and require also annual maintenance payments. However,
with the introduction of cloud computing, people as well as business
enterprises can now access their programs through the internet. This
kind of computing is rapidly growing in popularity and especially

with small business enterprises. As the number of users on cloud
increases, the existing resources decreases automatically which leads
to the problem of delay between the users and the cloud service
providers. Thus, improving the elasticity features (Load balancing
and Task Scheduling) in cloud there by dealt smartly with traffic

such that the situation in which some nodes are overloaded and some
other are under loaded should never arise.

So many research studies focused on improving the elasiticity
features in cloud which are based on different considerations like
static, dynamic, distributed, centralized, hierarchical and workflow
dependent approaches[1-4]. In static approach Prior knowledge base
is required about, each node statistics and user requirements are not
compatible with changing user requirements as well as load. In
Dynamic approach, Run time statistics of each node are monitored to
adapt to changing load requirements but is time consuming. Where
as in Centralized and Distributed has a different approach together.
In the former case, Single node or server is responsible for
maintaining the statistics of entire network and updating it from time
to time where as in latter case all the processors in the network

responsible for load balancing store their own local database (e.g.
MIB) to make efficient balancing decisions. But in both these
approaches the overhead of computation is more. Hierarchical Nodes
at different levels of hierarchy communicate with the nodes below
them to get information about the network performance and it has a
very complex approach[5-6].

In this paper we present a novel algorithm for improving the
elasticity in cloud through using of Self organizing map neural
networks is presented which can provide a uniform distribution of
load in all data centers. The difference between our proposed
approaches with previous approach is that it is able to adaptively
select next data center not only based on their topological closeness
(distances) but also based on their load and their density in each set-
up phase by using SOM neural network. We tried to develop the
classic idea for load balancing and task scheduling and incorporate a
data center allocation model using SOM neural networks in order to
apply three unrelated variables.

2. KOHONEN SELF ORGANIZING MAP
The Kohonen self-organising networks[7] have a two-layer topology.
The first layer is the input layer, the second layer is itself a network
in a plane. Every unit in the input layer is connected to all the nodes
in the grid in the second layer. Furthermore the units in the grid
function as the output nodes. The nodes in the grid are only sparsely
connected. Here each node has four immediate neighbours.

The network (the units in the grid) is initialised with small random

values. A neighbourhood radius is set to a large value. The input is
presented and the Euclidean distance between the input and each
output node is calculated. The node with the minimum distance is
selected, and this node, together with its neighbours within the
neighbourhood radius, will have their weights modified to increase
similarity to the input. The neighbourhood radius decreases over time
to let areas of the network be specialised to a pattern. .The algorithm
results in a network where groups of nodes respond to each class thus
creating a map of the found classes.

2.1. Algorithm of Kohonen Self Organizing Map

The Self-Organizing Map algorithm can be broken up into 6 steps [7]

STEP-1 Each node's weights are initialized.

STEP-2 A vector is chosen at random from the set of training data
and presented to the network.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 6; December -2014

 www.ijcrd.com Page 130

STEP-3 Every node in the network is examined to calculate which
ones' weights are most like the input vector. The winning node is
commonly known as the Best Matching Unit (BMU).

STEP-4 The radius of the neighborhood of the BMU is calculated.
This value starts large. Typically it is set to be the radius of the
network, diminishing each time-step.

STEP-5 Any nodes found within the radius of the BMU, calculated
in 4), are adjusted to make them more like the input vector. The
closer a node is to the BMU, the more its' weights are altered.

STEP-6 Repeat step-2 for N iterations.

3. PROPOSED APPROACH

3.1. FRAMEWORK

The operation of the algorithm is divided in two phases. Each phase
begins with a data center selection phase, in which the parameters for
a particular data center is calculated, followed by a allocator phase,
where the data center will be allocated to the specified machine. Data
center allocator aggregates the request received and allocates the data
center to the specified end user request.

which a communication link between a pair of data center that can
work.
So we will have a D matrix with n*4 dimensions. Since we are
applying two different type variables, first we have to normalize all

values. We used a Min-Max normalization method [] in which mina

and maxa are the minimum and maximum values for attribute a. Min-
max normalization, maps a value v in the range of (0, 1) by simply
computing.

By means of above equation, the dataset D matrix will be:

In order to determine weight matrix, BS has to select m cluster heads
nodes corresponding to m regions of the network space. We need
four variables of these selected data center to apply them as weight
vectors of our SOM: Geographical distance between consumer and
data center {D(t)}, workload of each data center{W(t)} , power
usage effectiveness{P(t)}, estimated allocation delay time{E(t)}.
Therefore our weight matrix would be:

W=

Where W is the weight matrix of SOM, we have a 4*m weight
matrix. The SOM topology structure would be as Fig.2.

Figure.1. Frame Work of the proposed Approach

3.2. Data center Selection phase/ Learning Phase

In this phase, neurons from the second layer compete for the
privilege of learning among each other, while the correct answer(s) is
(are) not known. This implies that for a certain input vector, there is
only one neuron that gets activated. To determine which neuron is
going to be activated, the input vector is compared with the vector
that is stored in each of the neurons, the so-called synaptic weight-
vectors. Only the neuron whose vector most closely resembles the
current input vector dominates. Consequently, the weights of the
winning neuron and its neighbouring neurons are updated by a
neighbourhood function.

In order to organize the neurons in a two dimensional map, we need a

set of input samples

X(t)=[Distance-D(t), Workload- W(t), Power usage effectiveness-

P(t), estimated allocation delay time-E(t)]

These are the set of variables that we want to consider as SOM input
dataset; these samples should consider all the QoS environments in

Figure 2. SOM topology structure

In our application, learning is done by minimization of Euclidian
distance between input samples and the map prototypes weighted by

a neighbourhood function h (i,j):

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 6; December -2014

 www.ijcrd.com Page 131

Where N is the number of data samples, M is the number of map

units; N(x
(k)

)is the neuron having the closest referent to data sample

x
(k)

 and h is the Gaussian neighborhood function defined by:

As a consequence of the learning phase, we have declared an output
function that has to be run in every data center node. This procedure
is named the wining neuron election algorithm.

3.4. Parameters Modelling

3.4.1 Geographical distance between Consumer and data centers
(D). It can be calculated as follows, let ‗u‘ and ‗mi‘ be the location
of consumer and the location of data center ‗i‘.
Let be the network delay weight to travel the request message

along the path between consumer and data center. The propagation

delay time dui is described as follows:

where distance between map unit ‗j‘ and ‗i/p‘ sample i

and is the neighbourhood radius at time t which is defined by

Where t is the number of iteration, T is the maximum number of

iteration or the training length. The distance between X
k
 and weight

vectors of all map neurons are computed. A neuron N(X
k
) which has

the minimum distance with input sample X
.;

, would win the
competition phase:

The neighbourhood radius is a large value at the beginning and it will
reduce with increasing of the time of the algorithm in iteration. After
competition phase, SOM should update the weight vector of the

winner N(Xk) and all its neighbors which placed at the neighborhood
radius of (R

N(X
k

)
). If W.j (R

N(X
k

)
)then :

Else

Where α0 the initial learning rate, t is the number of iteration and T is

the maximum training length. The learning phase repeats until
stabilization of weight vectors.

3.3. Allocator Phase/ Execution Phase

In this phase the weights are declared fixed. First, every neuron (i, j)

calculates the similarity between the input vector x(t), {xk|1<k< m}

and its own synaptic weight vector W'ij. This function of similarity is
based on a predefined similarity criterion. Next, it is declared a

winning neuron, with a synaptic weight vector W'g, similar to the
input x. Every Data center implements a SOM as a function. SOM
gives an output denoted by QoS. This value is returned by a function
defined by the SOM user, according to its aims.
In the execution phase, the data centers operate according to the
framework designed as above (fig.1.). Every data center measures the
QoS periodically with every neighbor data center, which determines
an input sample. After a data center has collected a set of input
samples from member nodes, it runs the wining neuron election
algorithm. After the winning neuron is elected, the data center uses
the output function to assign QoS estimation. Finally, this value is
employed to select the request for next data center.

3.4.2 Workload on data centers(W), this can be calculated as

follows, where pi be a total available number of physical CPU
threads in the data center ‗i‘. The VMM considers that the virtual
CPU of VMs is in form of logical CPUs, it can be allocated to each
corresponding threads of physical CPUs in the data center.

3.4.3 Power usage effectiveness (P) is a measure of how efficiently
a computer data center uses its power; specifically, how much of the
power is actually used by the computing equipment. The PUE at each
of the data center, is calculated by using the formula as follows

3.4.4 Estimate the allocation delay time (E) To evaluate estimated

allocation delay time (E), both workload wi of data center ‗i’ and

geographical distance dui are summed.

4.CONCLUSIONS

We have presented a new neural network based algorithm for
improving elasticity in cloud. The algorithm elects the data center
nodes for next incoming request running an AI-algorithm. The use of
AI in every data center node dynamically varies the assignment of
this node role, distributing the energy consumption through the
network. In fact the use of a SOM on every data center node implies
the distribution of the artificial intelligence over the network.

REFERENCES

[1] Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloudcomputing: State-of-

the-art and research challenges.Journal of Internet Services and
Applications, 1(1), 7-18. DOI 10.1007/s13174-010-0007-6.

[2] Sotomayor, B., Montero, R. S., Llorente, I. M. &Foster, I. (2009).
Virtual infrastructure management in private and hybrid clouds. IEEE
InternetComputing, 13(5), 14-22.

[3] Al Nuaimi, K., Mohamed, N., Al Nuaimi, M. & Al-Jaroodi, J. (2012).
A survey of load balancing in cloud computing: challenges and
algorithms. 2012 IEEE Second Symposium on Network Cloud
Computing and Applications 978-0-7695-4943-9/12 College of
Information Technology, UAEU Al Ain, United Arab Emirates

[4] Zhao, C., Zhang, S., Liu, Q., Xie, J. & Hu, J. (2009). Independent

Tasks Scheduling Based on Genetic Algorithm in Cloud Computing.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 3; Issue: 6; December -2014

 www.ijcrd.com Page 132

[5] M. Randles, D. Lamb, and A. Taleb-Bendiab, ―A comparative study
into distributed load balancing algorithms for cloud computing,‖ in
Advanced Information Networking and Applications Workshops
(WAINA), 2010 IEEE 24th International Conference on, pp. 551–556,
IEEE, 2010.

[6] Z. Zeng and V. Bharadwaj, ―A Static Load Balancing Algorithm via
Virtual Routing,‖ Proc. Conf. Parallel and Distributed Computing and
Systems (PDCS ‘03), Nov. 2003.

[7] T. Kohonen, The self-organizing map, in: Proceedings of the IEEE,
vol. 78, 1990, pp. 1464–1480.

