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Abstract  -  The main concern for improving elasticity in cloud 

computing is how to handle the scheduling of tasks and 

balancing the load in cloud network with high throughput, less 

over head and response time there by efficient utilization of 

resources. As a result, Dynamic approaches with the purpose of 

scaling the tasks and resources efficiently have drawn attentions 

of many research studies. Recently, there have been a strong 

interest to use intelligent tools especially Neural Networks in 

improving elasticity of cloud infrastructure , due to their simple 

parallel distributed computation, distributed storage, data 

robustness, auto-classification of tasks and load in cloud centers . 

Dimensionality reduction and prediction of cloud data obtained 

simply from the outputs of the neural-networks algorithms can 

lead to lower communication costs and energy conservation. This 

paper aims to present the most important possible application of 

neural networks for improving elasticity in cloud computing. 
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1.Introduction  
Organizations are tired of mobilizing & committing large cap-ex that 
tie up cash and require also annual maintenance payments. However, 
with the introduction of cloud computing, people as well as business 
enterprises can now access their programs through the internet. This 
kind of computing is rapidly growing in popularity and especially 

with small business enterprises. As the number of users on cloud 
increases, the existing resources decreases automatically which leads 
to the problem of delay between the users and the cloud service 
providers. Thus, improving the elasticity features ( Load balancing 
and Task Scheduling) in cloud there by dealt smartly with traffic 

such that the situation in which some nodes are overloaded and some 
other are under loaded should never arise. 

 
So many research studies focused on improving the elasiticity 
features in cloud which are based on different considerations like 
static, dynamic, distributed, centralized, hierarchical and workflow 
dependent approaches[1-4]. In static approach Prior knowledge base 
is required about, each node statistics and user requirements are not 
compatible with changing user requirements as well as load. In 
Dynamic approach, Run time statistics of each node are monitored to 
adapt to changing load requirements but is time consuming. Where 
as in Centralized and Distributed has a different approach together. 
In the former case, Single node or server is responsible for 
maintaining the statistics of entire network and updating it from time 
to time where as in latter case all the processors in the network 

 
responsible for load balancing store their own local database (e.g. 
MIB) to make efficient balancing decisions. But in both these 
approaches the overhead of computation is more. Hierarchical Nodes 
at different levels of hierarchy communicate with the nodes below 
them to get information about the network performance and it has a 
very complex approach[5-6]. 
 
In this paper we present a novel algorithm for improving the 
elasticity in cloud through using of Self organizing map neural 
networks is presented which can provide a uniform distribution of 
load in all data centers. The difference between our proposed 
approaches with previous approach is that it is able to adaptively 
select next data center not only based on their topological closeness 
(distances) but also based on their load and their density in each set-
up phase by using SOM neural network. We tried to develop the 
classic idea for load balancing and task scheduling and incorporate a 
data center allocation model using SOM neural networks in order to 
apply three unrelated variables. 
 
2. KOHONEN SELF ORGANIZING MAP  
The Kohonen self-organising networks[7] have a two-layer topology. 
The first layer is the input layer, the second layer is itself a network 
in a plane. Every unit in the input layer is connected to all the nodes 
in the grid in the second layer. Furthermore the units in the grid 
function as the output nodes. The nodes in the grid are only sparsely 
connected. Here each node has four immediate neighbours. 
 
The network (the units in the grid) is initialised with small random 

values. A neighbourhood radius is set to a large value. The input is 
presented and the Euclidean distance between the input and each 
output node is calculated. The node with the minimum distance is 
selected, and this node, together with its neighbours within the 
neighbourhood radius, will have their weights modified to increase 
similarity to the input. The neighbourhood radius decreases over time 
to let areas of the network be specialised to a pattern. .The algorithm 
results in a network where groups of nodes respond to each class thus 
creating a map of the found classes. 
 
 
2.1. Algorithm of Kohonen Self Organizing Map 
 
The Self-Organizing Map algorithm can be broken up into 6 steps [7] 
 
STEP-1 Each node's weights are initialized. 
 
STEP-2 A vector is chosen at random from the set of training data 
and presented to the network. 
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STEP-3 Every node in the network is examined to calculate which 
ones' weights are most like the input vector. The winning node is 
commonly known as the Best Matching Unit (BMU). 
 
STEP-4 The radius of the neighborhood of the BMU is calculated. 
This value starts large. Typically it is set to be the radius of the 
network, diminishing each time-step. 
 
STEP-5 Any nodes found within the radius of the BMU, calculated 
in 4), are adjusted to make them more like the input vector. The 
closer a node is to the BMU, the more its' weights are altered. 
 
STEP-6 Repeat  step-2 for N iterations. 
 
3. PROPOSED APPROACH 

 
3.1. FRAMEWORK 
 
The operation of the algorithm is divided in two phases. Each phase 
begins with a data center selection phase, in which the parameters for 
a particular data center is calculated, followed by a allocator phase, 
where the data center will be allocated to the specified machine. Data 
center allocator aggregates the request received and allocates the data 
center to the specified end user request. 

which a communication link between a pair of data center that can 
work.  
So we will have a D matrix with n*4 dimensions. Since we are 
applying two different type variables, first we have to normalize all 

values. We used a Min-Max normalization method [] in which mina 

and maxa are the minimum and maximum values for attribute a. Min-
max normalization, maps a value v in the range of (0, 1) by simply 
computing. 
 
 
 
By means of above equation, the dataset D matrix will be: 
 
 
 
 
 
 
 
 

 
In order to determine weight matrix, BS has to select m cluster heads 
nodes corresponding to m regions of the network space. We need 
four variables of these selected data center to apply them as weight 
vectors of our SOM: Geographical distance between consumer and 
data center {D(t)}, workload of each data center{W(t)} , power 
usage effectiveness{P(t)}, estimated allocation delay time{E(t)}. 
Therefore our weight matrix would be: 
 
 
 
 
 
W= 
 
 
 
 
 
 
Where W is the weight matrix of SOM, we have a 4*m weight 
matrix. The SOM topology structure would be as Fig.2. 

 
Figure.1. Frame Work of the proposed Approach 

 
3.2. Data center Selection phase/ Learning Phase 
 
In this phase, neurons from the second layer compete for the 
privilege of learning among each other, while the correct answer(s) is 
(are) not known. This implies that for a certain input vector, there is 
only one neuron that gets activated. To determine which neuron is 
going to be activated, the input vector is compared with the vector 
that is stored in each of the neurons, the so-called synaptic weight-
vectors. Only the neuron whose vector most closely resembles the 
current input vector dominates. Consequently, the weights of the 
winning neuron and its neighbouring neurons are updated by a 
neighbourhood function. 
 
In order to organize the neurons in a two dimensional map, we need a 

set of input samples 
 
X(t)=[ Distance-D(t), Workload- W(t), Power usage effectiveness-

P(t), estimated allocation delay time-E(t)] 
 
These are the set of variables that we want to consider as SOM input 
dataset; these samples should consider all the QoS environments in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. SOM topology structure 
 
In our application, learning is done by minimization of Euclidian 
distance between input samples and the map prototypes weighted by 

a neighbourhood function h (i,j): 
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Where N is the number of data samples, M is the number of map 

units; N(x
(k)

)is the neuron having the closest referent to data sample 

x
(k)

 and h is the Gaussian neighborhood function defined by: 

As a consequence of the learning phase, we have declared an output 
function that has to be run in every data center node. This procedure 
is named the wining neuron election algorithm. 
 
3.4. Parameters Modelling 
 
3.4.1 Geographical distance between Consumer and data centers  
(D). It can be calculated as follows, let ‗u‘ and ‗mi‘ be the location 
of consumer and the location of data center ‗i‘.  
Let be the network delay weight to travel the request message 

along the path between consumer and data center. The propagation 

delay time dui is described as follows: 

 

where  distance between map unit ‗j‘ and ‗i/p‘ sample i 

and is the neighbourhood radius at time t which is defined by 
 
 
 
Where t is the number of iteration, T is the maximum number of 

iteration or the training length. The distance between X
k
 and weight 

vectors of all map neurons are computed. A neuron N(X
k
) which has 

the minimum distance with input sample X 
.;

, would win the 
competition phase: 
 
 
 
 
 
The neighbourhood radius is a large value at the beginning and it will 
reduce with increasing of the time of the algorithm in iteration. After 
competition phase, SOM should update the weight vector of the 

winner N(Xk) and all its neighbors which placed at the neighborhood  
radius of (R 

N(X
k

)
). If W.j     (R 

N( X
k

)
)then : 

 
 
Else 
 
 
Where α0 the initial learning rate, t is the number of iteration and T is 

the maximum training length. The learning phase repeats until 
stabilization of weight vectors. 
 
3.3. Allocator Phase/ Execution Phase 

 
In this phase the weights are declared fixed. First, every neuron (i, j) 

calculates the similarity between the input vector x(t), {xk|1<k< m} 

and its own synaptic weight vector W'ij. This function of similarity is 
based on a predefined similarity criterion. Next, it is declared a 

winning neuron, with a synaptic weight vector W'g, similar to the 
input x. Every Data center implements a SOM as a function. SOM 
gives an output denoted by QoS. This value is returned by a function 
defined by the SOM user, according to its aims.  
In the execution phase, the data centers operate according to the 
framework designed as above (fig.1.). Every data center measures the 
QoS periodically with every neighbor data center, which determines 
an input sample. After a data center has collected a set of input 
samples from member nodes, it runs the wining neuron election 
algorithm. After the winning neuron is elected, the data center uses 
the output function to assign QoS estimation. Finally, this value is 
employed to select the request for next data center. 

 
 

 
3.4.2 Workload on data centers(W), this can be calculated as 

follows, where pi be a total available number of physical CPU 
threads in the data center ‗i‘. The VMM considers that the virtual   
CPU of VMs is in form of logical CPUs, it can be allocated to each 
corresponding threads of physical CPUs in the data center.  
 

 
 

 

3.4.3 Power usage effectiveness (P) is a measure of how efficiently 
a computer data center uses its power; specifically, how much of the 
power is actually used by the computing equipment. The PUE at each 
of the data center, is calculated by using the formula as follows  
 
 

 
 

 
3.4.4 Estimate the allocation delay time (E) To evaluate estimated 

allocation delay time (E), both workload wi of data center ‗i’ and 

geographical distance dui are summed.  

 
 
 

4.CONCLUSIONS 
 

We have presented a new neural network based algorithm for 
improving elasticity in cloud. The algorithm elects the data center 
nodes for next incoming request running an AI-algorithm. The use of 
AI in every data center node dynamically varies the assignment of 
this node role, distributing the energy consumption through the 
network. In fact the use of a SOM on every data center node implies 
the distribution of the artificial intelligence over the network. 
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