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Abstract- Low Density Parity-Check (LDPC) codes are best 

error correcting codes these codes are less complex and easy to 

construct so LDPC codes are used in communication system, it 

needs to access large amount of data so it requires large amount 

of memory access which leads to high energy consumption. To 

reduce the energy consumption, the memory access is reduced by 

decreasing the decoding time and complexity using proposed one 

step Majority logic decodable(MLD) technique for EG-LDPC 

codes. The turbo-decoding message-passing (TDMP) algorithm is 

used in the proposed architecture-aware (AA) LDPC code which 

has a faster convergence rate and hence a throughput advantage 

in the standard decoding algorithm. This work aims to error 

detection in the decoding process. The one step Majority Logic 

Decodable(MLD) method proposed accelerates the logic decoding 

of Euclidean Geometry Low Density Parity check(EG-LDPC) 

requirements. In this method error detection is done for first few 

iterations, if there are no errors it will decode the data directly. 

The most words within a memory will be error-free, so the 

typical decoding time is greatly decreased. The outcomes 

obtained show that the method is effective for EG-LDPC codes of 

long length. The simulation and synthesis are done using XILINX 

ISE 13.1, the code is written in verilog. The proposed LDPC 

decoder architecture requires only 3.30ns time for decoding 

process and number of LUTs used is only 176 which are less 

compared to conventional decoder architecture. It requires less 

memory access. Hence the proposed architecture is Energy 

Efficient. 
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1. INTRODUCTION  

Low Density Parity Check codes (LDPC) get acquired 

major consideration as a result of close to Shannon limit 

performance. They have been used in a number of cellular 

requirements such as DVB S-2, IEEE 802.16e along with 802.11n 

because of their exceptional problem improving performance.                                                      

The main goal of this work is concentrating on Decoder 

part in the communication system. At the decoder section LDPC 

codes are used to decode the data along with Error Correcting Codes 

(ECC). 

Several Error Correcting Codes(ECC) have been developed 

over decades to perform encoding and decoding of data. They vary in 

their construction, performance, computation, and implementation 

complexity. Some well known error correcting codes are 

convolutional code, Reed Solomon, BCH(Bose- Chaudhuri- 

Hocquenghem), Turbo and LDPC codes. 

Among different error correcting codes LDPC codes are best error 

correcting codes for many applications because of their best 

characteristics like low density, less complexity in the decoding 

process and also it is easy to represent the LDPC codes than other 

codes.  

There are different types of LDPC codes 1) Pseudo random 

LDPC codes-These are initial LDPC codes. 2) Architecture Aware 

(AA)-LDPC codes-These are structured codes, whose parity check 

matrix is built according to specific patterns. Since they support an 

efficient partial-parallel hardware VLSI implementation, AA-LDPC 

codes have been adopted in several modern communication 

standards. 

Finite geometries have been used to derive many error correcting 

codes some examples are  

1) Difference Set (DS)-LDPC codes- The first three iterations will 

detect all errors affecting four or fewer bits, and also errors affecting 

five bits were additionally always detected. 

2) Euclidean Geometry (EG)-LDPC codes- These codes are cyclic. 

These will detect the errors in the first three iterations only, if no 

error found it will decode the data directly. Thus it is fitting well to 

the requirements of modern memory systems. 

So in this work Euclidean Geometry LDPC codes were 

used for the error detection. Majority Logic Decodable(MLD) is the 

sub class of  EG-LDPC codes. Codes in this subclass are also cyclic.  

For a code with block length N, majority logic decoding 

(when implemented serially) requires N iterations, so that as the code 

size grows, so does the decoding time. In the proposed approach, 

only the first three iterations are used to detect errors. If there are no 

errors, then decoding can be stopped without completing the 

remaining iterations thereby greatly reducing the decoding time and 

therefore achieving a large speed. The probability of undetected 

errors was also found to decrease as the code block length increased. 

For a billion error patterns only a few errors (or sometimes none) 

were undetected. This may be sufficient for some applications. 

Another advantage of the proposed method is that it 

requires very little additional circuitry as the decoding circuitry is 

also used for error detection. The additional area required to 

implement the scheme was only around 1% for large word sizes. 

 

1.1 PROBLEM   DEFINATION 
 The earlier LDPC decoder consumes more energy for long 

length code. 

 Decoding complexity is more. 

High power consumption is one of the bottlenecks for 

LDPC decoder. However how to further reduce its energy 

consumption is a challenging design problem.  

 

1.2 OBJECTIVES 
 Reducing the complexity of the decoder. 

 Finding the errors in the first 3 iterations. 

 Increase the speed of the decoding process. 



International Journal of Combined Research & Development (IJCRD)                                                                             

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015 
 

     www.ijcrd.com Page 512 
 

2. LITERATURE SURVEY 
LDPC codes are invented in early 1960‘s by Robert G 

Gallager[1]. It is one of the most attractive methods in the field of 

communication for the transmission of data in the noisy channel in a 

easy way. 

Any linear code incorporates a representation as a code 

associated to bipartite graph then that code is referred to as a low 

density parity check (LDPC) code. 

The crucial innovation was Gallager‘s introduction of 

iterative decoding algorithms (or message-passing decoders) which 

he showed to achieving a significant fraction of channel capacity at 

low intricacy. Except for the papers by means of Zyablov and Pinsker 

[2], Margulis [3], and Tanner [4] the field then laid unknown for next 

30 years. Interest in LDPC codes leads to the discovery of turbo 

codes and LDPC requirements were independently rediscovered by 

equally MacKay and Neal [5] and Wiberg [6]. 

VLSI architectures for low density parity-check (LDPC) 

decoders amenable to low- voltage and low-power functioning. First, 

a highly-parallel decoder buildings with low routing overhead can be 

described. Second, an efficient method is proposed to detect early 

convergence on the iterative decoder and terminate the computations, 

thereby reducing dynamic electric power. With early termination, the 

prototype is efficient at decoding with 10.4pJ/bit/iteration, while 

performing within 3 dB on the Shannon limit at a BER of 10 

sufficient reasons for 3.3Gb/s total throughput. 7pJ/bit/iteration while 

maintaining an overall throughput of 648 Mb/s, due to highly-parallel 

architecture.[19]. 

 In a recent paper, a method was proposed to accelerate the 

majority logic decoding of difference set low density parity check 

codes. This is useful as majority logic decoding can be implemented 

serially with simple hardware but requires a large decoding time. For 

memory applications, this increases the memory access time. The 

method detects whether a word has errors in the first iterations of 

majority logic decoding, and when there are no errors the decoding 

ends without completing the rest of the iterations. Since most words 

in a memory will be error-free, the average decoding time is greatly 

reduced. In this brief, we study the application of a similar technique 

to a class of Euclidean geometry low density parity check (EG-

LDPC) codes that are one step majority logic decodable. The results 

obtained show that the method is also effective for EG-LDPC codes. 

Extensive simulation results are given to accurately estimate the 

probability of error detection for different code sizes and numbers of 

errors[25]. 

 

3. IMPLEMENTATION OF EG-LDPC 

DECODER 
 

 Flow chart briefs about various steps involved in the 

implementation for the LDPC decoder. Each of these steps is 

explained in the following section. The Flow chart is shown in the fig 

3.1  

Implementation of LDPC decoder is described in the following 

section 

1. Generation of parity check matrix for the given code 

Parity check matrix can be generated using the equation 

H(x)=(1+xN) / G(x) 

Where N—total number of bits 

H(x)=(1+x63) / (1+xn+…….+x26) 

While representing the H-matrix we will make it into two matrices 

1) Parity matrix 

2) Identity matrix 

                      H=[PT|In-k] 

Where P is the given parity matrix and I is the identity matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 Flow chart of LDPC decoder implementation 

 

Ex:- If we are performing 63 bit code rate parity matrix will be upto 0 

to 36 columns and Identity matrix will be 37 to 63 columns. 
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If the value of 25th row first column in the identity matrix is high then 

in the next 26th row it will be shifted down to 2nd column and so on. 

 

2. Tanner graph representation for the parity check matrix 

Generate the parity check matrix for given code 

Tanner graph representation for parity check 

matrix 

Message passing between variable and check nodes 

Error detection and Decoding of the data 

Error=0

0 

Decode the proper data 

 Decode the 

wrong data 
Yes 

No 
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Based on the Parity matrix generated Tanner graph is drawn by 

considering all the columns are variable node and all the rows are 

check nodes. 

Then variable nodes and check nodes are connected depending 

upon the number of 1‘s in the matrix like if there is 1 in the 1st row 

and 1st column position then those two nodes are connected to each 

other like that the process repeats. 

Tanner graph representation is shown in fig 3.2 

 
 

Fig 3.2 Tanner graph representation 

 

3. Message passing between  variable node and check node 

 Message passing between variable node and check node is 

done according to tanner graph. The decoding can be done by 

message passing between the nodes through number of iterations. 

The number of iterations can be fixed by the user. Here the initial 

message stored in the variable node is first sent to the check node 

then the check node will update the message and send it back to the 

variable node this way the process continues till the fixed number of 

iterations. After completing the iterations the message will decode. 

 To reduce the complexity of the decoding the min sum 

algorithm is used in the message passing technique. 

The messages updatation in the variable node and check node is done 

using following equations  

Variable node process  
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4. Error detection and decoding of the data 

The decoding of EG-LDPC codes are done along with the error 

detection in the decoder part. 

One step MLD can be implemented serially using the plan 

shown in Fig.3.3 which corresponds towards decoder for the EG-

LDPC signal with N=15. First the information block is loaded into 

this registers. Then the check equations are computed and if most 

them has a value of a single, the last bit is inverted. Then all bits are 

cyclically altered. This set of operations takes its single iteration: 

after N iterations, the bits are in the same position by which they 

were loaded. In accomplishing this, each bit may be corrected only 

once. As can be seen, this decoding circuitry is simple, but it really 

requires a long decoding time period if N is large. 

 

 
Fig.3.3 Serial one step majority logic decoder for the (15,7) EG-

LDPC code 

 

1) All equations include this variable whose value is stored within the 

last few register (the one marked as c14). 

2) The rest of this registers are included in at most one of many check 

equations. 

If errors are detected in the first few iterations of MLD, 

then no errors are detected with other iterations, the decoding can be 

stopped without completing all of other iterations. In the first 

iteration, errors will be detected when at least one of the check 

equations is affected with an odd number of parts in error. In the next 

iteration, as bits are cyclically altered by one position, errors may 

affect other equations such that some errors undetected from the first 

iteration will be detected. As iterations advance, all detectable errors 

will eventually be detected. 

 Finally if there are no errors then the data will decode 

properly if there is error found during iterations then data will corrupt 

and it will decode the wrong data. 

 

3.1 Error detection in decoding of EG-LDPC 

codes 
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One particular step majority logic decoding can be 

implemented serially with very basic circuitry, but requires long 

decoding times. In a recollection, this would increase the access time 

which can be an important system parameter. Just a few classes of 

codes can be decoded using one step majority logic decoding. Among 

those are some Euclidean Geometry Low Density Parity Check (EG-

LDPC) codes of used in, and Difference Set Low Density Parity 

Check (DS-LDPC) codes. 

A procedure to help accelerate a serial implementation 

connected with majority logic decoding of DS-LDPC codes. The idea 

behind the method is by using the first iterations of majority logic 

decoding to detect if word being decoded contains errors. If there are 

no errors, then decoding can be stopped without completing the 

remaining iterations, therefore greatly reducing this decoding time. 

For a signal with block length N, majority logic decoding (when 

implemented serially) requires N iterations, in addition to being the 

code size grows, thus does the decoding time. Within the proposed 

approach, only the initial three iterations are used to help detect 

errors, thereby achieving a sizable speed increase when N is large. In 

DS-LDPC codes, all error combinations of approximately five errors 

can be detected from the first three iterations. Also, errors affecting 

over five bits were detected that has a probability very close to one 

particular. The 

probability of 

undetected 

errors was also found 

to decrease since 

the code block length 

increased. 

Regarding a billion error patterns only a few errors (or sometimes 

none) had been undetected. This may be sufficient for many 

applications. 

Another advantage of the proposed method is it requires 

very little additional circuitry since the decoding circuitry is also used 

for error detection. For example, the excess area required to 

implement this scheme was only around 1% pertaining to large word 

sizes. 

The method proposed relies upon the properties of DS-

LDPC codes and so it is not directly applicable to additional code 

classes. In the following, a similar approach for EG-LDPC codes is 

presented. 

Finite geometries are actually used to derive many error-

correcting codes. One example is EG-LDPC codes that are based on 

the structure of Euclidean geometries over a Galois field. Among 

EG-LDPC codes we have a subclass of codes that is one step 

majority logic decodable (MLD). Codes with this subclass are also 

cyclic. The actual parameters for some of these codes are shown in 

Table 3.1, where N would be the block size, K the quantity of 

information bits, j the quantity of MLD check equations and tML the 

quantity of errors that the code can correct using one step MLD. 

 

Table 3.1 One Step MLD EG-LDPC Unique Codes 

  

 

 

 

 

 

 

     

The DS-LDPC codes most errors can be detected in the 

first a few iterations of MLD. Based on simulation results and on a 

theoretical proof for case of two errors, this hypothesis was made. 

―Given a word read from a memory protected with DS-LDPC codes, 

and affected by up to help five bit-flips, all errors can be detected in 

only three decoding cycles‖. 

Then this proposed technique was implemented with 

verilog and synthesized, showing in which for codes with large 

obstruct sizes the overhead is low. This is because the recent majority 

logic decoding circuitry is reused to perform error detection and only 

some extra control logic is needed. 

 

For codes with small words and affected by only a few bit 

flips, it is practical to build and check all possible mistake 

combinations. As the code size grows and how many bits flips 

increases, it is no longer feasible to extensively test all possible 

combinations. Thus the simulations are done within two ways, by 

exhaustively examining all error combinations when it can be 

feasible and by checking at random generated combinations in the 

other countries in the cases. 

The results for these exhaustive checks are shown within 

Table 3.2. These results prove the hypothesis for those codes with 

smaller word measurement. For N=255 around three errors have been 

extensively tested while for N=1023 merely single and double error 

combination have been exhaustively tested. 

 

 

 

 

Table 3.2 Undetected Errors in Exhaustive Checking  

N 1error 2 errors 3 errors 4 errors 

15 0 0 0 0 

63 0 0 0 0 

255 0 0 0 - 

1023 0 0 - - 

 

To check the results of the radical checks for larger codes 

and quantity of errors, simulations using random mistake patterns 

have also been used. In all the findings, one billion error 

combinations are tested.  

It can be viewed that for errors affecting over four bits 

there is a small number of error combinations that will not 

necessarily be detected in the first three iterations. This number 

lowers with word size and also with the number of errors. The 

decrease with this word size can be explained as follows: the larger 

the word dimensions, the larger the number of MLD check equations 

(see Table 3.1) and therefore it is more unlikely that errors occur in 

the same equation. As for this number of errors, a related reasoning 

applies the more problems occur, the larger the probability that an 

odd quantity of errors occurs in no less than one equation. Finally it 

must be noted the probabilities of undetected errors vary for an even 

and an odd quantity of errors as in the latter case, one of the errors 

must occur in a very bit which is not examined by any equation. The 

simulation results presented suggest that all errors affecting three and 

four bits could be detected in the first a few iterations. For errors 

N K J tML 

15 7 4 2 

63 37 8 4 

255 175 16 8 

1023 781 32 16 
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affecting an increased number of bits, there is often a small 

probability of not getting detected in those iterations. Intended for 

large word sizes, the likelihood are sufficiently small to be acceptable 

in several applications. 

In summary, the first three iterations will detect all errors 

affecting four or less bits, and almost every different detectable error 

affecting more bits. This is a slightly worse performance than 

regarding DS-LDPC codes where problems affecting five bits were 

moreover always detected. However, the majority logic circuitry is 

very simple for EG-LDPC codes, as the number of equations is a 

power connected with two and an approach based on sorting 

networks can be employed to reduce the cost with the majority logic 

voting. In EG-LDPC codes have block lengths near a power of two, 

thus fitting well towards requirements of modern memory systems. 

This may mean that in most cases it may be more convenient to use 

an EG-LDPC code and hold a word size compatible with existing 

designs (power of two) compared to using a DS-LDPC code 

requiring another word size or a shortened version of that code. When 

using word size which is a power of two, there is a bit which is not as 

used by the EG-LDPC code (see table 4.1). This bit can be taken for a 

parity covering all bits in the word that would detect all errors 

affecting an odd quantity of bits. In that case, the planning using the 

EG-LDPC would furthermore detect all errors affecting all 5 or fewer 

bits. 

 

Two types of errors: 

 Soft error: This affects in the memory data. 

 Hard error: This affects the hardware components 

 Some useful formulae for LDPC calculations: 

1) For getting number of errors in code rate 

22s-1=<code rate> 

2) Code length=22s+2s+1 

3) Message bits=22s+2s+3s 

4) Parity check bits=3s+1 

5) Minimum distance(d)=2s+2. 

 

4.SIMULATION AND RESULTS 
 

The synthesis and simulations are done using XILINX ISE 

13.1 version. The code is written in verilog. 

 

The implementation of LDPC decoder is done in the following flow 

1. Generation of parity check matrix. 

2. Message passing between variable node to check node 

based on parity check matrix.  

3. Decoding of given data along with error detection using 

MLD technique. 

The main goal of this work is concentrating only on decoder part of 

the communication system so here the encoder input is assumed with 

different possible combinations. The implementation of the decoder 

result is simulated in the following way.  

 

1. Generation of parity check matrix. 

 

  
Fig 4.1 Simulation output for Parity check matrix generation 

 

  2. Message passing between variable node to check node based on 

parity check matrix.  

 
Fig 4.2 Simulation output for the messages updated in the variable 

node 

3. Decoding of given data along with error detection using MLD 

technique. 

 

The given data is decoded after 65 iterations because here 

66 fixed iterations are taken. It will check the errors in the first 3 

iterations only if there is no error the output will decode properly. 

The input given to the LDPC decoder is ―898925385058615299‖ 

(unsigned decimal).The decoder decodes the given input properly and  

 

the output which is same as input with no errors. The 

simulation result for decoder output without errors is as shown in Fig 

4.2. 

 

Fig 4.2 Simulation result for decoder output without error 
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In the simulation window, output represented by blue 

colour shows the pre output status till 65 iterations and once 65 

iterations are done, data gets decoded in the 66 iteration and output 

appears in green colour as in the simulation window. The counter 

represents the number of iterations. In the window if the line 

representing the error contains ‗0‘ means there is no error or else if it 

is ‗1‘ the error exist. 

If an error is found while decoding, the decoder will not decode 

the data correctly. The output will not be same as input. The input 

given to the LDPC decoder is ―4440514323093127183‖. While 

decoding an error is found. So the decoder will not decode the data 

correctly and we get an error output i.e. ―4440514323093127182‖.  

The simulation result for decoder output with error is as shown in 

Fig 4.3.  

 

Fig 4.3 Simulation result for decoder output with error 

 

Table 4.1 Comparison between conventional and proposed 

decoder 

 

From the comparison Table 4.1 the proposed decoder uses the less 

number of LUT slice i.e 176 and requires only 3.30ns time which is 

very less compared to the conventional decoder. Hence it requires 

less power of the CPU. By this analysis the conclusion is made that 

the proposed decoder architecture is energy efficient. 

 

 

5.CONCLUSION & FUTURE SCOPE 
 

Conclusion 
The EG-LDPC decoder with less complexity and increased decoding 

speed is implemented and the errors also successfully detected if 

exists. The detection of errors throughout the first iterations of serial 

one step Majority Logic Decoding of EG-LDPC codes has been 

done. The objective was to reduce the decoding time by halting the 

decoding process when simply no errors are detected in the first few 

iterations. The simulation outcomes show that all tested combinations 

of errors affecting around four bits are detected in the first three 

iterations of decoding.  

The simulation results presented suggest that all errors 

affecting three and four bits would be detected in the first three 

iterations. For errors affecting a larger number of bits, there is a small 

probability of not being detected in those iterations. For large word 

sizes, the probabilities are sufficiently small to be acceptable in many 

applications. 

 According to the synthesis report obtained for the proposed 

system the time required for decoding process is ―3.30ns‖ which is 

very less compared to conventional decoder and the number of LUTs 

used is ―176‖ for the proposed system, which is also less compared to 

conventional decoder. By this analysis conclusion is made that the 

proposed system uses very less number of LUTs so the memory 

access for the system is reduced and the decoding time is also less so 

the complexity of the decoder is reduced hence it requires less power 

of the CPU so the proposed layer decoding architecture is Energy 

efficient.  

Future Scope 
Future work on decoding can be done for a larger choice of 

word lengths and error correction capabilities. Future work also 

includes extending the theoretical analysis for the cases of three and 

four errors. More generally, determining the necessary number of 

iterations to detect errors affecting certain number of bits seems to 

become an interesting problem. A general solution to that problem 

would enable a fine-grained trade off between decoding time and 

error discovery capability. 
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