
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 511

Energy Efficient Layer Decoding Architecture for LDPC Decoder

Jyothi B R
Lecturer

KLS’s VDRIT

Haliyal-581329

Sangamesh G Tamburimath

Firmware Development Engineer
BITCOMM Technologies

Noida-201301

Abstract- Low Density Parity-Check (LDPC) codes are best

error correcting codes these codes are less complex and easy to

construct so LDPC codes are used in communication system, it

needs to access large amount of data so it requires large amount

of memory access which leads to high energy consumption. To

reduce the energy consumption, the memory access is reduced by

decreasing the decoding time and complexity using proposed one

step Majority logic decodable(MLD) technique for EG-LDPC

codes. The turbo-decoding message-passing (TDMP) algorithm is

used in the proposed architecture-aware (AA) LDPC code which

has a faster convergence rate and hence a throughput advantage

in the standard decoding algorithm. This work aims to error

detection in the decoding process. The one step Majority Logic

Decodable(MLD) method proposed accelerates the logic decoding

of Euclidean Geometry Low Density Parity check(EG-LDPC)

requirements. In this method error detection is done for first few

iterations, if there are no errors it will decode the data directly.

The most words within a memory will be error-free, so the

typical decoding time is greatly decreased. The outcomes

obtained show that the method is effective for EG-LDPC codes of

long length. The simulation and synthesis are done using XILINX

ISE 13.1, the code is written in verilog. The proposed LDPC

decoder architecture requires only 3.30ns time for decoding

process and number of LUTs used is only 176 which are less

compared to conventional decoder architecture. It requires less

memory access. Hence the proposed architecture is Energy

Efficient.

Key words- LDPC, EG-LDPC, MLD, Error correcting codes,

1. INTRODUCTION

Low Density Parity Check codes (LDPC) get acquired

major consideration as a result of close to Shannon limit

performance. They have been used in a number of cellular

requirements such as DVB S-2, IEEE 802.16e along with 802.11n

because of their exceptional problem improving performance.

The main goal of this work is concentrating on Decoder

part in the communication system. At the decoder section LDPC

codes are used to decode the data along with Error Correcting Codes

(ECC).

Several Error Correcting Codes(ECC) have been developed

over decades to perform encoding and decoding of data. They vary in

their construction, performance, computation, and implementation

complexity. Some well known error correcting codes are

convolutional code, Reed Solomon, BCH(Bose- Chaudhuri-

Hocquenghem), Turbo and LDPC codes.

Among different error correcting codes LDPC codes are best error

correcting codes for many applications because of their best

characteristics like low density, less complexity in the decoding

process and also it is easy to represent the LDPC codes than other

codes.

There are different types of LDPC codes 1) Pseudo random

LDPC codes-These are initial LDPC codes. 2) Architecture Aware

(AA)-LDPC codes-These are structured codes, whose parity check

matrix is built according to specific patterns. Since they support an

efficient partial-parallel hardware VLSI implementation, AA-LDPC

codes have been adopted in several modern communication

standards.

Finite geometries have been used to derive many error correcting

codes some examples are

1) Difference Set (DS)-LDPC codes- The first three iterations will

detect all errors affecting four or fewer bits, and also errors affecting

five bits were additionally always detected.

2) Euclidean Geometry (EG)-LDPC codes- These codes are cyclic.

These will detect the errors in the first three iterations only, if no

error found it will decode the data directly. Thus it is fitting well to

the requirements of modern memory systems.

So in this work Euclidean Geometry LDPC codes were

used for the error detection. Majority Logic Decodable(MLD) is the

sub class of EG-LDPC codes. Codes in this subclass are also cyclic.

For a code with block length N, majority logic decoding

(when implemented serially) requires N iterations, so that as the code

size grows, so does the decoding time. In the proposed approach,

only the first three iterations are used to detect errors. If there are no

errors, then decoding can be stopped without completing the

remaining iterations thereby greatly reducing the decoding time and

therefore achieving a large speed. The probability of undetected

errors was also found to decrease as the code block length increased.

For a billion error patterns only a few errors (or sometimes none)

were undetected. This may be sufficient for some applications.

Another advantage of the proposed method is that it

requires very little additional circuitry as the decoding circuitry is

also used for error detection. The additional area required to

implement the scheme was only around 1% for large word sizes.

1.1 PROBLEM DEFINATION
 The earlier LDPC decoder consumes more energy for long

length code.

 Decoding complexity is more.

High power consumption is one of the bottlenecks for

LDPC decoder. However how to further reduce its energy

consumption is a challenging design problem.

1.2 OBJECTIVES
 Reducing the complexity of the decoder.

 Finding the errors in the first 3 iterations.

 Increase the speed of the decoding process.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 512

2. LITERATURE SURVEY
LDPC codes are invented in early 1960‘s by Robert G

Gallager[1]. It is one of the most attractive methods in the field of

communication for the transmission of data in the noisy channel in a

easy way.

Any linear code incorporates a representation as a code

associated to bipartite graph then that code is referred to as a low

density parity check (LDPC) code.

The crucial innovation was Gallager‘s introduction of

iterative decoding algorithms (or message-passing decoders) which

he showed to achieving a significant fraction of channel capacity at

low intricacy. Except for the papers by means of Zyablov and Pinsker

[2], Margulis [3], and Tanner [4] the field then laid unknown for next

30 years. Interest in LDPC codes leads to the discovery of turbo

codes and LDPC requirements were independently rediscovered by

equally MacKay and Neal [5] and Wiberg [6].

VLSI architectures for low density parity-check (LDPC)

decoders amenable to low- voltage and low-power functioning. First,

a highly-parallel decoder buildings with low routing overhead can be

described. Second, an efficient method is proposed to detect early

convergence on the iterative decoder and terminate the computations,

thereby reducing dynamic electric power. With early termination, the

prototype is efficient at decoding with 10.4pJ/bit/iteration, while

performing within 3 dB on the Shannon limit at a BER of 10

sufficient reasons for 3.3Gb/s total throughput. 7pJ/bit/iteration while

maintaining an overall throughput of 648 Mb/s, due to highly-parallel

architecture.[19].

 In a recent paper, a method was proposed to accelerate the

majority logic decoding of difference set low density parity check

codes. This is useful as majority logic decoding can be implemented

serially with simple hardware but requires a large decoding time. For

memory applications, this increases the memory access time. The

method detects whether a word has errors in the first iterations of

majority logic decoding, and when there are no errors the decoding

ends without completing the rest of the iterations. Since most words

in a memory will be error-free, the average decoding time is greatly

reduced. In this brief, we study the application of a similar technique

to a class of Euclidean geometry low density parity check (EG-

LDPC) codes that are one step majority logic decodable. The results

obtained show that the method is also effective for EG-LDPC codes.

Extensive simulation results are given to accurately estimate the

probability of error detection for different code sizes and numbers of

errors[25].

3. IMPLEMENTATION OF EG-LDPC

DECODER

 Flow chart briefs about various steps involved in the

implementation for the LDPC decoder. Each of these steps is

explained in the following section. The Flow chart is shown in the fig

3.1

Implementation of LDPC decoder is described in the following

section

1. Generation of parity check matrix for the given code

Parity check matrix can be generated using the equation

H(x)=(1+xN) / G(x)

Where N—total number of bits

H(x)=(1+x63) / (1+xn+…….+x26)

While representing the H-matrix we will make it into two matrices

1) Parity matrix

2) Identity matrix

 H=[PT|In-k]

Where P is the given parity matrix and I is the identity matrix

Fig 3.1 Flow chart of LDPC decoder implementation

Ex:- If we are performing 63 bit code rate parity matrix will be upto 0

to 36 columns and Identity matrix will be 37 to 63 columns.

H-matrix:

63373663

6337360

This represents This represents

 parity matrix Identity matrix

 Parity matrix: Identity Matrix:

000

1

00

10

001
6337

63

0

000

100

010

001

000

63

27
26
25

0

th
th
th

If the value of 25th row first column in the identity matrix is high then

in the next 26th row it will be shifted down to 2nd column and so on.

2. Tanner graph representation for the parity check matrix

Generate the parity check matrix for given code

Tanner graph representation for parity check

matrix

Message passing between variable and check nodes

Error detection and Decoding of the data

Error=0

0

Decode the proper data

 Decode the

wrong data
Yes

No

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 513

Based on the Parity matrix generated Tanner graph is drawn by

considering all the columns are variable node and all the rows are

check nodes.

Then variable nodes and check nodes are connected depending

upon the number of 1‘s in the matrix like if there is 1 in the 1st row

and 1st column position then those two nodes are connected to each

other like that the process repeats.

Tanner graph representation is shown in fig 3.2

Fig 3.2 Tanner graph representation

3. Message passing between variable node and check node

 Message passing between variable node and check node is

done according to tanner graph. The decoding can be done by

message passing between the nodes through number of iterations.

The number of iterations can be fixed by the user. Here the initial

message stored in the variable node is first sent to the check node

then the check node will update the message and send it back to the

variable node this way the process continues till the fixed number of

iterations. After completing the iterations the message will decode.

 To reduce the complexity of the decoding the min sum

algorithm is used in the message passing technique.

The messages updatation in the variable node and check node is done

using following equations

Variable node process

]\[

)(
,

)(
,

mMni

q
ni

q
nm RnQ

Where
)(

,
q
nmQ is the msg from variable to check node

 λn is the intrinsic LLR of the variable node n

)(
,
q

nmR Is the msg from check node to variable node

Soft output for the variable node is given by

}{

)(
,

)(

Mni

q
ni

q
n Rn

Check node process

}\{

)(
,

)1(
,)sgn()sgn(

nNmj

q
jm

q
nm QR

}\{

)(
,

1)1(
.

nNmj

q
jm

q
nm QR

Where
2

tanhln)()(1 x
xx

The min sum algorithm equation is given by

)1(
,

}\{

)1(
, min

q
jm

nNmj

q
nmR

4. Error detection and decoding of the data

The decoding of EG-LDPC codes are done along with the error

detection in the decoder part.

One step MLD can be implemented serially using the plan

shown in Fig.3.3 which corresponds towards decoder for the EG-

LDPC signal with N=15. First the information block is loaded into

this registers. Then the check equations are computed and if most

them has a value of a single, the last bit is inverted. Then all bits are

cyclically altered. This set of operations takes its single iteration:

after N iterations, the bits are in the same position by which they

were loaded. In accomplishing this, each bit may be corrected only

once. As can be seen, this decoding circuitry is simple, but it really

requires a long decoding time period if N is large.

Fig.3.3 Serial one step majority logic decoder for the (15,7) EG-

LDPC code

1) All equations include this variable whose value is stored within the

last few register (the one marked as c14).

2) The rest of this registers are included in at most one of many check

equations.

If errors are detected in the first few iterations of MLD,

then no errors are detected with other iterations, the decoding can be

stopped without completing all of other iterations. In the first

iteration, errors will be detected when at least one of the check

equations is affected with an odd number of parts in error. In the next

iteration, as bits are cyclically altered by one position, errors may

affect other equations such that some errors undetected from the first

iteration will be detected. As iterations advance, all detectable errors

will eventually be detected.

 Finally if there are no errors then the data will decode

properly if there is error found during iterations then data will corrupt

and it will decode the wrong data.

3.1 Error detection in decoding of EG-LDPC

codes

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 514

One particular step majority logic decoding can be

implemented serially with very basic circuitry, but requires long

decoding times. In a recollection, this would increase the access time

which can be an important system parameter. Just a few classes of

codes can be decoded using one step majority logic decoding. Among

those are some Euclidean Geometry Low Density Parity Check (EG-

LDPC) codes of used in, and Difference Set Low Density Parity

Check (DS-LDPC) codes.

A procedure to help accelerate a serial implementation

connected with majority logic decoding of DS-LDPC codes. The idea

behind the method is by using the first iterations of majority logic

decoding to detect if word being decoded contains errors. If there are

no errors, then decoding can be stopped without completing the

remaining iterations, therefore greatly reducing this decoding time.

For a signal with block length N, majority logic decoding (when

implemented serially) requires N iterations, in addition to being the

code size grows, thus does the decoding time. Within the proposed

approach, only the initial three iterations are used to help detect

errors, thereby achieving a sizable speed increase when N is large. In

DS-LDPC codes, all error combinations of approximately five errors

can be detected from the first three iterations. Also, errors affecting

over five bits were detected that has a probability very close to one

particular. The

probability of

undetected

errors was also found

to decrease since

the code block length

increased.

Regarding a billion error patterns only a few errors (or sometimes

none) had been undetected. This may be sufficient for many

applications.

Another advantage of the proposed method is it requires

very little additional circuitry since the decoding circuitry is also used

for error detection. For example, the excess area required to

implement this scheme was only around 1% pertaining to large word

sizes.

The method proposed relies upon the properties of DS-

LDPC codes and so it is not directly applicable to additional code

classes. In the following, a similar approach for EG-LDPC codes is

presented.

Finite geometries are actually used to derive many error-

correcting codes. One example is EG-LDPC codes that are based on

the structure of Euclidean geometries over a Galois field. Among

EG-LDPC codes we have a subclass of codes that is one step

majority logic decodable (MLD). Codes with this subclass are also

cyclic. The actual parameters for some of these codes are shown in

Table 3.1, where N would be the block size, K the quantity of

information bits, j the quantity of MLD check equations and tML the

quantity of errors that the code can correct using one step MLD.

Table 3.1 One Step MLD EG-LDPC Unique Codes

The DS-LDPC codes most errors can be detected in the

first a few iterations of MLD. Based on simulation results and on a

theoretical proof for case of two errors, this hypothesis was made.

―Given a word read from a memory protected with DS-LDPC codes,

and affected by up to help five bit-flips, all errors can be detected in

only three decoding cycles‖.

Then this proposed technique was implemented with

verilog and synthesized, showing in which for codes with large

obstruct sizes the overhead is low. This is because the recent majority

logic decoding circuitry is reused to perform error detection and only

some extra control logic is needed.

For codes with small words and affected by only a few bit

flips, it is practical to build and check all possible mistake

combinations. As the code size grows and how many bits flips

increases, it is no longer feasible to extensively test all possible

combinations. Thus the simulations are done within two ways, by

exhaustively examining all error combinations when it can be

feasible and by checking at random generated combinations in the

other countries in the cases.

The results for these exhaustive checks are shown within

Table 3.2. These results prove the hypothesis for those codes with

smaller word measurement. For N=255 around three errors have been

extensively tested while for N=1023 merely single and double error

combination have been exhaustively tested.

Table 3.2 Undetected Errors in Exhaustive Checking

N 1error 2 errors 3 errors 4 errors

15 0 0 0 0

63 0 0 0 0

255 0 0 0 -

1023 0 0 - -

To check the results of the radical checks for larger codes

and quantity of errors, simulations using random mistake patterns

have also been used. In all the findings, one billion error

combinations are tested.

It can be viewed that for errors affecting over four bits

there is a small number of error combinations that will not

necessarily be detected in the first three iterations. This number

lowers with word size and also with the number of errors. The

decrease with this word size can be explained as follows: the larger

the word dimensions, the larger the number of MLD check equations

(see Table 3.1) and therefore it is more unlikely that errors occur in

the same equation. As for this number of errors, a related reasoning

applies the more problems occur, the larger the probability that an

odd quantity of errors occurs in no less than one equation. Finally it

must be noted the probabilities of undetected errors vary for an even

and an odd quantity of errors as in the latter case, one of the errors

must occur in a very bit which is not examined by any equation. The

simulation results presented suggest that all errors affecting three and

four bits could be detected in the first a few iterations. For errors

N K J tML

15 7 4 2

63 37 8 4

255 175 16 8

1023 781 32 16

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 515

affecting an increased number of bits, there is often a small

probability of not getting detected in those iterations. Intended for

large word sizes, the likelihood are sufficiently small to be acceptable

in several applications.

In summary, the first three iterations will detect all errors

affecting four or less bits, and almost every different detectable error

affecting more bits. This is a slightly worse performance than

regarding DS-LDPC codes where problems affecting five bits were

moreover always detected. However, the majority logic circuitry is

very simple for EG-LDPC codes, as the number of equations is a

power connected with two and an approach based on sorting

networks can be employed to reduce the cost with the majority logic

voting. In EG-LDPC codes have block lengths near a power of two,

thus fitting well towards requirements of modern memory systems.

This may mean that in most cases it may be more convenient to use

an EG-LDPC code and hold a word size compatible with existing

designs (power of two) compared to using a DS-LDPC code

requiring another word size or a shortened version of that code. When

using word size which is a power of two, there is a bit which is not as

used by the EG-LDPC code (see table 4.1). This bit can be taken for a

parity covering all bits in the word that would detect all errors

affecting an odd quantity of bits. In that case, the planning using the

EG-LDPC would furthermore detect all errors affecting all 5 or fewer

bits.

Two types of errors:

 Soft error: This affects in the memory data.

 Hard error: This affects the hardware components

 Some useful formulae for LDPC calculations:

1) For getting number of errors in code rate

22s-1=<code rate>

2) Code length=22s+2s+1

3) Message bits=22s+2s+3s

4) Parity check bits=3s+1

5) Minimum distance(d)=2s+2.

4.SIMULATION AND RESULTS

The synthesis and simulations are done using XILINX ISE

13.1 version. The code is written in verilog.

The implementation of LDPC decoder is done in the following flow

1. Generation of parity check matrix.

2. Message passing between variable node to check node

based on parity check matrix.

3. Decoding of given data along with error detection using

MLD technique.

The main goal of this work is concentrating only on decoder part of

the communication system so here the encoder input is assumed with

different possible combinations. The implementation of the decoder

result is simulated in the following way.

1. Generation of parity check matrix.

Fig 4.1 Simulation output for Parity check matrix generation

 2. Message passing between variable node to check node based on

parity check matrix.

Fig 4.2 Simulation output for the messages updated in the variable

node

3. Decoding of given data along with error detection using MLD

technique.

The given data is decoded after 65 iterations because here

66 fixed iterations are taken. It will check the errors in the first 3

iterations only if there is no error the output will decode properly.

The input given to the LDPC decoder is ―898925385058615299‖

(unsigned decimal).The decoder decodes the given input properly and

the output which is same as input with no errors. The

simulation result for decoder output without errors is as shown in Fig

4.2.

Fig 4.2 Simulation result for decoder output without error

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 516

In the simulation window, output represented by blue

colour shows the pre output status till 65 iterations and once 65

iterations are done, data gets decoded in the 66 iteration and output

appears in green colour as in the simulation window. The counter

represents the number of iterations. In the window if the line

representing the error contains ‗0‘ means there is no error or else if it

is ‗1‘ the error exist.

If an error is found while decoding, the decoder will not decode

the data correctly. The output will not be same as input. The input

given to the LDPC decoder is ―4440514323093127183‖. While

decoding an error is found. So the decoder will not decode the data

correctly and we get an error output i.e. ―4440514323093127182‖.

The simulation result for decoder output with error is as shown in

Fig 4.3.

Fig 4.3 Simulation result for decoder output with error

Table 4.1 Comparison between conventional and proposed

decoder

From the comparison Table 4.1 the proposed decoder uses the less

number of LUT slice i.e 176 and requires only 3.30ns time which is

very less compared to the conventional decoder. Hence it requires

less power of the CPU. By this analysis the conclusion is made that

the proposed decoder architecture is energy efficient.

5.CONCLUSION & FUTURE SCOPE

Conclusion
The EG-LDPC decoder with less complexity and increased decoding

speed is implemented and the errors also successfully detected if

exists. The detection of errors throughout the first iterations of serial

one step Majority Logic Decoding of EG-LDPC codes has been

done. The objective was to reduce the decoding time by halting the

decoding process when simply no errors are detected in the first few

iterations. The simulation outcomes show that all tested combinations

of errors affecting around four bits are detected in the first three

iterations of decoding.

The simulation results presented suggest that all errors

affecting three and four bits would be detected in the first three

iterations. For errors affecting a larger number of bits, there is a small

probability of not being detected in those iterations. For large word

sizes, the probabilities are sufficiently small to be acceptable in many

applications.

 According to the synthesis report obtained for the proposed

system the time required for decoding process is ―3.30ns‖ which is

very less compared to conventional decoder and the number of LUTs

used is ―176‖ for the proposed system, which is also less compared to

conventional decoder. By this analysis conclusion is made that the

proposed system uses very less number of LUTs so the memory

access for the system is reduced and the decoding time is also less so

the complexity of the decoder is reduced hence it requires less power

of the CPU so the proposed layer decoding architecture is Energy

efficient.

Future Scope
Future work on decoding can be done for a larger choice of

word lengths and error correction capabilities. Future work also

includes extending the theoretical analysis for the cases of three and

four errors. More generally, determining the necessary number of

iterations to detect errors affecting certain number of bits seems to

become an interesting problem. A general solution to that problem

would enable a fine-grained trade off between decoding time and

error discovery capability.

6. REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge,

MA: MIT Press, 1963. Available at

http://justice.mit.edu/people/gallager.html.

[2] V. Zyablov and M. Pinsker, ―Estimation of the error-correction

complexity of Gallager low-density codes,‖ Probl. Pered.

Inform., vol. 11, pp. 23–26, Jan. 1975.

[3] G. A. Margulis, ―Explicit construction of graphs without short

cyclesand low density codes,‖ Combinatorica, vol. 2, no. 1,

1982, pp. 71–78.

[4] R. Tanner, ―Arecursive approach to lowcomplexity codes,‖

IEEE Trans. Inform. Theory, vol. IT-27, pp. 533–547, Sept.

1981.

[5] D. J. C. MacKay and R. M. Neal, ―Near Shannon limit

performance of low density parity check codes,‖ Electron.

Lett., vol. 32, pp. 1645–1646, Aug. 1996.

[6] N. Wiberg, ―Codes and decoding on general graphs,‖

Dissertation no. 440, Dept. Elect. Eng. Linköping Univ.,

Linköping , Sweden, 1996.

[7] N. Sourlas, ―Spin-glass models as error-correcting codes,‖

Nature_journal, , pp. 693–695, 1989.

[8] I. Kanter and D. Saad, ―Error-correcting codes that nearly

saturate shannon‘s bound,‖ Physical Review Letter., vol. 83,

pp. 2660–2663, 1999.

 Conventional decoder Proposed

decoder

No of slice

LUTs used

8799 176

Timing

summary

9.664ns 3.30ns

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 517

[9] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V.

Stemann, ―Practical loss-resilient codes,‖ in Proc. 29th

Annual ACM Symp. Theory of Computing, 1997,

[10] M. Luby,M. Mitzenmacher, A. Shokrollahi, and D. Spielman,

―Analysis of low density codes and improved designs using

irregular graphs,‖ in Proc. 30th Annu. ACM Symp. Theory of

Computing, 1998, pp. 249–258.

[11] Kiran K. Gunnam, Gwan S. Choi, and Mark B. Yeary 2007 ―A

Parallel VLSI Architecture for Layered Decoding for Array

LDPC Codes‖.

[12] Jun Lin IJin Sha', Zhongfeng Wang2 and Li u'

 ―An improved min-sum based column-layered decoding

algorithm for Ldpc codes‖-2009

[13] Zhiqiang Cui1, Zhongfeng Wang2, Senior Member, IEEE, and

Xinmiao Zhang3

 ―Reduced-Complexity Column-Layered Decoding and

Implementation for LDPC Codes‖ 2010.

[14] Mohammad M. Mansour, Member, IEEE, and Naresh R.

Shanbhag, Fellow, IEEE ―A 640-Mb/s 2048-Bit

Programmable LDPC Decoder Chip‖ 2006.

[15] Pedro Reviriego, Juan A. Maestro, and Mark F. Flanagan,

―Error Detection in Majority Logic Decoding of Euclidean

Geometry Low Density Parity Check (EG-LDPC) Codes‖ Jan

2013.

