
International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 518

Abstract: Software Performance Engineering is a holistic
and quantitative approach towards identifying performance

bottle-necks early in the development cycle and hence not

compromising on system qualities like flexibility,

maintainability, reliability and usability. This paper address

processes that may be implemented by IT to transition itself

from testing to engineering and implementing best practices in
providing value adds and improving the overall QoS to the

product delivery.

Keywords : Software Performance Engineering, SPE,
Performance Testing, Load generators, Dynatrace, Soasta

Cloud Test, Jenkins, build pipeline, virtual user load,

performance tuning and profiling, network analysis, database

testing, PCOE, monitoring tools

1. INTRODUCTION
In a world where the demand for technology is ever rising,
with a growing base of consumers relying heavily on

technology for their daily tasks, with a swift competition

between companies to attract the customers, one field of

interest among the IT hub has always been to monetize on the

growing consumer demands in the ecommerce world. And

now with Google search results loading instantly, big data
analytic tools tracking every actions of the customer and hand

held devices becoming more powerful by the day, the bar for

website performance is at an unprecedented levels. It just isn't

enough that an application has cool features, tempting designs

and offers, easy and multiple payment options etc.., but also

that the application meets the performance requirements to
scale the user load at any point of time. The performance

requirements are determined using an extensive engineering

approach built right into the SDLC phase of the application.

Software performance engineering is becoming increasingly

important to businesses as they look to improve the non-
functional performance of applications and get more out of

their IT investments. By leveraging performance engineering

techniques, IT professionals can be indispensable in building

and optimizing scalable systems.

This calls for implementing an approach to stabilize
applications through Performance engineering. This paper

covers the need for Performance engineering and the methods

to be implemented by performance testers that could enable

an organization to make its needed transition into

Performance engineering.

2. Software Performance Engineering
Software performance engineering (SPE) is a systematic,

quantitative approach to constructing software systems that

meet performance requirements. With SPE, you detect
problems early in development, and use quantitative methods

to support cost-benefit analysis of hardware solutions versus

software requirements or design solutions, or a combination of

software and hardware solutions.

SPE is a software-oriented approach: it focuses on architecture,
design, and implementation choices. The models assist developers

in controlling resource requirements by selecting architecture and

design alternatives with acceptable performance characteristics.

They aid in tracking performance throughout the development

process and prevent problems from surfacing late in the life cycle.

SPE also provides principles, patterns, and antipatterns for

creating responsive software, specifications for the data required

for evaluation, procedures for obtaining performance

specifications, and guidelines for the types of evaluation to be

conducted at each development stage. It incorporates models

for representing and predicting performance as well as a set of
analysis techniques.

If the software does not meet its performance objectives, the

application is unlikely to be a success. If we do not know our

performance objectives, it is unlikely that we will meet them.

Performance affects different roles in different ways:

 As an architect, you need to balance performance and

scalability with other quality-of-service (QoS) attributes

such as manageability, interoperability, security, and

maintainability.

 As a developer, you need to know where to start, how to

proceed, and when you have optimized your software

enough.

 As a tester, you need to validate whether the application
supports expected workloads.

 As an administrator, you need to know when an

application no longer meets its service level agreements,

and you need to be able to create effective growth plans.

 As an organization, you need to know how to manage
performance throughout the software life cycle, as well

as lower total cost of ownership of the software that

your organization creates.

As the connection between application success and business
success continues to gain recognition, particularly in the mobile

and the web space, application performance engineering has taken

on a preventive and perfective role within the SDLC to decide

how important performance is to the success of the project. The

more important you consider performance to be, the greater the

need to reduce the risk of failure and the more time you should
spend addressing performance.

2.1 Engineering for Performance
To engineer for performance, we need to embed a performance
culture in our development life cycle, and we need a process to

follow. When we have a process to follow, we know exactly

where to start and how to proceed, and also know when we are

finished. Performance modeling helps us apply engineering

discipline to the performance process. The fundamental approach
is to set objectives and to measure your progress toward those

objectives. Performance modeling helps us set objectives for our

application scenarios. Measuring continues throughout the life

cycle and helps us determine whether we are moving towards our

performance objectives or away from them.

 Transition to Software Performance Engineering

Joby Joy
Associate Consultant-TCS

BE- Electronics & Communication Engineering

MVJCE, Bangalore, India

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 519

Figure 1: Engineering for performance

Engineering for performance is broken down into the
following actionable categories and areas of

responsibility:

2.1.1 Set Performance Objectives
Performance must be given due consideration from the

beginning including measurable performance objectives.

Performance objectives are usually specified in terms of the

following:

 Response time: Response time is the amount of time
that it takes for a server to respond to a request.

 Throughput: Throughput is the number of requests

that can be served by your application per unit time.

Throughput is frequently measured as requests or
logical transactions per second.

 Resource utilization: Resource utilization is the

measure of how much server and network resources

are consumed by your application. Resources

include CPU, memory, disk I/O, and network I/O.

 Workload: Workload includes the total number of

users and concurrent active users, data volumes, and

transaction volumes.

We can identify resource costs on a per-scenario basis.
Scenarios might include browsing a product catalog,

adding items to a shopping cart, or placing an order.

2.1.2 Design for Performance
Performance plays a vital role in determining the design of an

application. Factors namely the architecture, technology,

design, system configuration needs to be determined with

regards to the overall performance of the application. Few key

categories that can be called into consideration in the design
of an application are:

 Coupling and cohesion: Loose coupling and high

cohesion.

 Communication: Transport mechanism, boundaries,

remote interface design, round trips, serialization,

bandwidth

 Concurrency: Transactions, locks, threading,

queuing

 Resource management: Allocating, creating,
destroying, pooling

 Caching: Per user, application-wide, data volatility

 Data structures and algorithms: Choice of
algorithm-Arrays versus collections

2.1.3 Life Cycle

Performance Engineering needs to be added to the various stages

in an application life cycle. Performance attributes that needs to

be considered at different stages are:

 Gathering requirements: We start to define performance

objectives, workflow, and key scenarios.

 Design: Working within the architectural constraints,

we start to generate specifications to construct the code.
The design should be reviewed from a performance

perspective.

 Development. Start reviewing the code early in the

implementation phase to identify inefficient coding

practices that could lead to performance bottlenecks..
Be careful to maintain a balanced approach during

development; micro-optimization at an early stage is not

likely to be helpful.

 Testing. Load and stress testing is used to generate

metrics and to verify application behavior and
performance under normal and peak load conditions.

 Deployment. During the deployment phase, validate the

model by using production metrics. Workload

estimates, resource utilization levels, response time, and

throughput are few attributes that needs to be validated.

 Maintenance: Continue to measure and monitor the

application deployed in the production environment.

Changes that may affect system performance include

increased user loads, deployment of new applications

on shared infrastructure, system software revisions, and
updates to your application to provide enhanced or new

functionality.

3. A Typical Ecommerce Architecture
A typical ecommerce application comprises of many

interconnected systems that performs various functionalities. An

end to end business flow for an ecommerce application begins

with customer visiting the web-site, placing an order through the
payment gateways provided, validating for the order fulfillment,

generating invoices to finally supporting the customer till the

order is successfully delivered. This typical business flow
encompasses multiple systems depended on each other to ensure

that the order is be placed successfully.

Figure 2: Ecommerce Systems

These ecommerce systems are implemented using a N-tier

architecture comprising of web servers, application and database

servers. The web servers are used to store, process and deliver

web pages to the client using an http/https protocol.

A web server has defined load limits, because it can handle only a

limited number of concurrent client connections (usually between
2 and 80,000, by default between 500 and 1,000) per IP

address (and TCP port) and it can serve only a certain maximum

number of requests per second depending on its settings, the http

request type, whether the contents are static, dynamic or cache

enabled, hardware or software limitations of OS. Application

servers are system software upon which web applications or

http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Web_application

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 520

desktop applications run. Application Servers consist of web

server connectors, computer programming languages, runtime

libraries, database connectors, and the administration code
needed to deploy, configure, manage, and connect these

components on a web host. An application server runs behind

a web Server and front of an SQL database that function as

the database server storing all the required information using

RDMS.

Additionally to all these systems, ecommerce applications
also leverage other systems like SAP, Oracle, Microsoft

dynamics etc, that consists of several modules, including
utilities for marketing and sales, field service, product design

and development, production and inventory control, human

resources, finance and accounting that collects and combines

data from the separate modules to provide the company or

organization with enterprise resource planning(ERP).Recently

companies have also started using big data technologies to
track the consumer sentiments in the ecommerce eco space.

With all these systems, compromise for any downtime within
the application is unacceptable and hence performance to

assess these application becomes inevitably of paramount

importance to meet the expected SLA's.

Figure 3: System SLA compliance

With the number of systems predominately being used in any

application it becomes difficult to understand and apply the
whole process of SPE to the systems. This calls for every

organization to transition into performance engineering to

monitor and analyze the potential bottle necks. Although the

scope of this paper is limited to imbibing performance

engineering methodologies only at the front end, however the

underlying concepts can be expanded to other sub-systems.

4. Transition process to SPE
The transition to SPE requires a systematic approach

comprising of varied practices:

4.1 Performance Testing
Performance testing (PT) is a non-functional testing technique

performed to determine the system parameters in terms of

responsiveness and stability under various workload.

Performance tesing measures the quality attributes of the

system, such as scalability, reliability and resource usage. The
different services provided under performance testing are

load, stress, volume,endurance,scalabilty and spike testing.

Figure 4: The PT cycle

SPE becomes predominant in the execute cycle of PT where
the application is monitored for performance bottle-necks.PT

is performed by using load generator tools like Jmeter,

LoadRunner, Soasta CloudTest, RPT etc. These tools provide

the flexibility of generating load from different geographical

locations hence simulating a virtual user load on par with the

real time load. These tools also help in providing data on the

transactions response times, throughput, error rate, bytes sent

and received etc that can be used for performing a superficial

analysis of the applications.

4.2 Performance Monitoring
Application performance monitoring (APM) is all about
delivering business applications that meet customer

satisfaction by deep monitoring, quick troubleshooting and

tracking end user experience. This is the most important phase

in SPE cycle.APM consists of tracking performance metrics

of applications and servers during the load test and ensuring

optimal usage of servers. This deep monitoring helps in
planning capacity, troubleshoot quickly and view utilization

reports for the various systems in an application.

APM is usually achieved by APM tools that provide a wide

range of monitoring capabilities in an application. They are

used to analyze the response times for the transactions at
different systems, response times between the sub-systems,

reason for spikes in the response times, memory usage of the

applications, number of threads allocated, information for

garbage collection, number of JDBC connections, network

latencies, image compression and caching etc. These tools

also help in finding out the root cause of a reported problem.
For example a Java Transaction Monitoring tool could get in

to the details of the Java Transactions executing in an

Application Server and help identify which SQL Queries are

taking time to execute or which methods in the Java class are

slowing down the application. These help save precious time

for the application team to resolve a problem. Some of the
popular tools for APM are AppDynamics, New Relic,

DynaTrace, Extrahopetc

Figure 5: The APM analysis

4.3 Performance Tuning
As performance bottlenecks are identified during performance
testing and monitoring, these issues are commonly rectified

through a process of performance tuning. Performance tuning can

involve configuration changes to hardware, software and network

components

A common bottleneck is the configuration of the application
and database servers. Performance tuning can also include

tuning SQL queries and tuning an applications underlying

code to cater for concurrency and to improve

efficiency. Performance tuning can result in hardware changes

being made. This is a last resort; ideally tuning changes will
result in a reduction of resource utilization

4.4 Other SPE Strategies
SPE also include troubleshooting for database and networking
issues that are identified as a part of the performance monitoring

strategy. This testing is usually performed by using database

testing tools like Data Generator, Datatect, Toad etc. by validating

the data mapping and integrity, business rule conformance,

atomicity, consistency, durability and isolation.

Network analysis or testing is performed to address for network

issues like latency, number of open connections, bandwidth

utilization etc. Tools like wire-shark, Network monitor, Http

analyzer can be used for the same. These tools function by

capturing the network trace between the client and the server

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Web_Server
http://en.wikipedia.org/wiki/SQL

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 521

request and analyzing the response contents. They can also be

testing to see if the code supports any compression and cache

techniques to enable better bandwidth optimization.

 5. SPE-A Practical Guide
A practical application to the approach of SPE that is

generally implemented in an application performance

management is discussed here. A feasible gist to the concepts

in SPE to help testers and developers track performance
metrics follows. The analysis was conducted on the staging

environment having two nodes on which the application is

deployed. The performance test is conducted on a web-service

API (Product Cxf services) that are inherently used in

production to list the products of a popular ecommerce site.

5. 1 Performance Testing
PT of the web service was initiated with a variable user load

up to 500 users for 30 minute duration using Soasta CloudTest

tool and AWS instances hosted in San Jose. During the course
of the test, performance monitoring using Dynatrace tool also

was enabled. Typical performance metrics noted are 90th

percentile response time, throughput, bandwidth usage, bytes

sent and received and errors on the load generator tools

5. 2 Performance Monitoring (PM)
Performance monitoring require detailed analysis of the

service under load. Different tools come with many options to

enable us analyze the performance metrics effectively.

However the underlying concepts of usage between the tool
remain the same. Typically these tools function by installing

agents on the servers that saves the performance data in the

server edition of the tools and performing the required

analysis.

PM starts by viewing the transaction flow diagram which
gives an overview of all the systems that the request serves

within the test environment.

Figure 6: System Level Analysis

The next step is to analyze the performance metrics of the web-

service. These results can be compounded with the metrics

obtained from the load test tools. These results have to be

monitored to check for spikes, resource consumption etc.

Figure 7: Response Time Metrics

Noting the duration of the spikes we can drill into the request that
is observed to be consuming higher response times. This can be

achieved by using appropriate filters among all the requests that

were being processed during the load test. Tools provide with a

myriad capabilities for effective filtering of the application based

on the response times. Post filtering we use the tools to drill deep

into the source code of the application to analyze the reason for the

failure. These failures can be at the thread, routine, method level of

the application and can be rightfully identified in the monitoring
process. By repeating the test we can observe if the errors are

consistent with the previous run and thus track for bugs in the

code.

Figure 8: Source Code Analysis

Depending upon the nature of the error other strategies in SPE can

be implemented accordingly. To elicit further on this, the error that

was analyzed from the tool relates to connectivity issues while

writing to the data base. Based on the results collected from two or
more tests, the root cause analysis was narrowed towards the

database and hence an exclusive approach to database testing had

to be incorporated.

In this type of database testing the query was repeatedly executed

over a period of time to measure the database throughput, response
time and connectivity to further conclude if the issue is persistent

for a prolonged period of time.

Figure 9: Database Testing Metrics

Similar approach can be tested depending upon the error observed
during the load test. Errors can be occur even at the network layers

and effective measures has to be implemented to check for

consistencies in the failures. These strategies of performance

engineering when implemented at a sprint level can lead to

identifying the performance bottle-necks at the sprint level itself

and thus leading to less or no production issues with time.

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 522

5. 3 Performance Profiling and Tuning
Other key important activity during the SPE monitoring

process is performance profiling. This implies to monitoring

the memory, CPU, disk IO operations consumed by the

processes during load test execution. For applications

programmed using java technologies, monitoring the JVM
becomes a necessary function in SPE. During the load test the

number of threads allocated, the number of socket connection

made and in pooling, the CPU and other resource consumed by

the application needs to be monitored. For errors such as

OutOfMemory exceptions typically triggered when the

application reaches the maximum allowed heap configured ,
then memory dumps needs to be collected and analyzed

(typically performed by the developer).

The end initiative of the SPE phase after tracking all the

required performance metrics and bugs is performance tuning.

A preliminary snapshot of these analyses is sent to the
development group to fix the issues or performance tuning

recommendations. Once fixes or tuning is applied on the test

system, the tests are re-executed and hence, test execution and

test analysis processes are iterative processes and need to be

executed until the desirable performance is achieved. Typically

tuning of the code can be done using developer support tools
such as profilers and code coverage analysis tools

6. SPE-Best Practices

These best practices identify techniques for working
effectively with others including developers, management,

and other divisions within the organization.

6.1 Implementing SPE in Scrum
SPE should be an essential activity in Agile because it

provides immediate feedback about the system in each sprint.

Performance engineering helps in ensuring that the system is

designed, built and validated against the required 'Quality of
Service' requirements. This process of validation helps us in

tracking for performance bottle necks in the early sprint cycles

thereby giving avoid the tedious process of code refactoring in

the future.

6.2 Produce timely results for Performance studies
Timely formulation and presentation of results and

recommendations is vital, especially when corrective action is

likely to be required. If a significant amount of time elapses
between when the information is needed and when it is

provided, key architectural or design decisions may have

already been made. If this happens, the required changes may

be more difficult to make, or they may no longer be feasible.

6.3 Adding Performance Test cases to build
pipeline.
Continuous tracking of the performance results is crucial to

identify performance bugs if any. Building performance test
jobs using Jenkins and adding it to the build pipeline of an

automation suite in an organization enables in continuous

tracking of performance related bugs along with functional

bugs. This process can also be mandated by certifying builds

before every code freeze and release. Each jobs on the build

pipeline needs to be tracked and certified before deploying the
code to the production environment.

6.4 Creating a Performance Centre of Excellence.
Every IT organization needs to have its PCOE to provide
recommendation and advises on performance test strategy ,

communicating and coordinating with product teams,

identifying high priority test cases and approaches to services

like capacity planning, code refactoring etc.

7. Conclusion
System quality attributes and performance are as important as
functional correctness and completeness. However, performance

is usually tuned into applications as an afterthought and is often

inadequately addresses in the development lifecycle process.

Performance engineering calls for specific skills in model
building, monitoring, benchmarking, optimization and tuning.

Several activities have been identified through the development

lifecycle and beyond to meet the skill needs. The widespread

adoption and maturity of global software development has

provided access to skills in model building and also monitoring,

benchmarking, optimization and tuning. However, collaborative
framework is needed to carry out performance engineering

activities in an efficient and cost-effective way.

The process as mentioned are adequate to enable an organization

to gradually transition itself into performance engineering thus

enabling companies to take advantage of their resources and never
ever asking to compromise on the quality of the product.

8. ACKNOWLEDGEMENT
I would like to thank the performance engineering team at Adobe
Bangalore for providing me all the resources and the support that

was crucial to conduct the research. The Managers and the Tech

leads in the team have constantly shared their thoughts and

experiences in aiding to the research. I would extend my gratitude

to the development team for providing their value adds in the
research. Last but not the least I would like to thank TCS for

guiding me through the entire research process.

9. REFERENCES

[1].B. Boehm, “Software Risk Management:

Principles and Practice,” IEEE Software,

vol. 8, no. 1, pp. 32-41, 1991.

[2]. P. C. Clements and L.

M. Northrop, “Software Architecture: An Executive

Overview,” Technical Report No. CMU/SEI-96-TR-

003, Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, 1996.

[3]. C. U. Smith and L. G. Williams,

Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software, Boston,

MA, Addison-Wesley, 2002.

[4]. JP Lewis, "Limits to software estimation",ACM

Software Engineering Notes ,Jul 2001

[5].https://blog.codecentric.de/en/2008/07/memory-

analysis-part-1-obtaining-a-java-heapdump/

[6]. http://apmblog.compuware.com/2012/07/12/

proactive-or-reactive-a-guide-to-prevent-problems-

instead-offixing-

them-faster/

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 1; January -2015

 www.ijcrd.com Page 523

[7].http://www.xoriant.com/blog/software-testing-

and-qa/best-practices-in-software-performance-

engineering.html.

[8].http://ieeexplore.ieee.org/stamp/stamp.jsp?arnu

mber=6772693.

[9]. D. J. Reifer, Making the Software Business

Case: Improvement by the Numbers, Boston,

Addison-Wesley, 2002.

[10].ISO. (2010). DIN ISO/IEC 25000 software

product Quality Requirements and Evaluation

(SQuaRE).

