
 International Journal of Combined Research & Development (IJCRD)
 eISSN: 2321-225X;pISSN:2321-2241 Volume: 4; Issue: 10; October -2015

 www.ijcrd.com Page 5133

Automatic Assessment Packet Generation & Fault

Localization System
Jagadish Math

1
, Sameena Banu

2

1
P.G.Student, Department of Computer Science & Engineering,

Khaja Bandanawaz College of Engineering& Technology,Kalburgi,Karntaka,India.

2
Assistant Professor, Department of Computer Science & Engineering,

Khaja Bandanawaz College of Engineering&Technology,Kalburgi,Karntaka,India.

Abstract— Recently networks are growing wide and more

complex. However administrators use tools like ping and trace

route to debug problems. Hence we proposed an automatic and

Methodical approach for testing and debugging networks called

Automatic Test Packet Generation (ATPG). This approach gets

router configurations and generates a device-independent model.

ATPG generate a few set of test packets to find every link in the

network. Test packets are forwarded frequently and it detect

failures to localize the fault. ATPG can detect both functional

and performance (throughput, latency) problems. We found, less

number of test packets is enough to test all rules in networks. For

example, 4000 packets can cover all rules in Stanford backbone

network, while 53 are much enough to cover all links.

Keywords— Fault Localization, Test Packet Selection, Network

Debugging, Automatic Test packet Generation (ATPG),

Forwarding InformationBase (FIB).

I. INTRODUCTION

It is popularly known us, very difficult to troubleshoot or

identify and remove errors in networks. Every day, network

engineers fight with mislabeled cables, software bugs, router

misconfigurations, fiber cuts, faulty interfaces and other

reasons that cause networks to drop down. Network engineers

hunt down bugs with various tools (e.g., Ping, trace route,

SNMP) and track down the reason for network failure using a

combination of accrued wisdom and

impression. Debugging networks is becoming more harder as

networks are growing larger (modern data centers may

contain 10 000 switches, a campus network may serve 50 000

users, a 100-Gb/s long-haul link may carry 100 000

flows) and are getting complicated (with over 6000 RFCs,

router software was based on millions of lines of source

code, and network chips contain billions of gates.

Fig. 1 is a simplified view of network state. Bottom of the

figure is the forwarding state to forward each packet, consist

of L2 and L3 forwarding information base (FIB), access

control lists, etc. The forwarding state was written by the

control plane (that could be local or remote) and should

correctly implement the network administrator’s scheme.

Examples of the scheme include: ―Security group X was

isolated from security Group Y,‖ ―Use OSPF for routing,‖ and

―Video traffic received at least 1 Mb/s.‖ We could think of the

controller compiling the scheme (A) into devicespecific

configuration files (B), which in turn determine the

forwarding behavior of each packet (C). To ensure the

network behave as designed, the three steps should remain

consistent every times. Minimally, requires that sufficient

links and nodes are working; the control plane identifies that a

laptop can access a server, the required outcome can fail if

links fail. The main reason for network failure is hardware and

software failure, and this problem is recognized themselves as

reachability failures and throughput/latency degradation. Our

intention is to automatically find these kinds of failures.

The intention of this paper is to generate a minimum set of

packets automatically to cover every link in the network.

This tool can automatically generate packets to test

performance assertions like packet latency. ATPG detects

errors independently and exhaustively testing forwarding

entries and packet processing rules in network. In this tool,

test packets are created algorithmically from the device

configuration files and First information base, with minimum

number of packets needed for complete coverage. Test

packets are fed into the network in which every rule was

exercised directly from the data plan. Since ATPG treats links

just like normal forwarding rules, the full coverage provides

testing of every link in network. It could be particularized to

generate a minimal set of packets that test every link for

network liveness. For reacting to failures, many network

operators like Internet proactively test the

health of the network by pinging between all pairs of sources.

Organizations can modify ATPG to face their needs; for

example, they can select to test for network liveness (link

cover) or test every rule (rule cover) to make sure security

policy. ATPG could be modified to test reachability and

performance. ATPG can adapt to constraints such as taking

test packets from only a few places in the network or using

particular routers to generate test packets from every port.

The contributions of this paper are as follows:

 International Journal of Combined Research & Development (IJCRD)
 eISSN: 2321-225X;pISSN:2321-2241 Volume: 4; Issue: 10; October -2015

 www.ijcrd.com Page 5134

1) A survey of network operators exposing common failures

and root causes.

2) A test packet generation algorithm.

3) A fault localization algorithm to separate faulty devices and

Rules.

4) ATPG usecases for functional and throughput testing.

5) Evaluation of prototype ATPG system using rule sets

gathered from the Stanford and Internet2 backbones.

Fig. 1. Static versus dynamic checking: A scheme is compiled to

forwarding state, and it is executed by the

forwarding plane.

II. RELATED WORK

The test packets which generate automatically by

configuration is not aware by earlier techniques. The very

often related works we are familiar is offline tools which test

invariants in networks. In control plane, NICE [7] tries to

comprehensively cover code path symbolically in a controller

applications with support of simplified switch and host models.

In the data plane, Anteater [25] models invariants as a

Boolean satisfiability problem which tests them against

configurations with a SAT solver. Header Space Analysis [16]

use geometric model for checking reachability, detecting

loops, and for verifying slicing. Recently, SOFT [1] put

forward to check uniformity between different Open Flow

agent implementations which is responsible for bridging

control and data planes in SDN context. ATPG supplement

these checkers directly by verifying the data plane and

exercising a important set of dynamic or performance errors

which could not be captured. The major contribution of ATPG

is not fault localization, but deciding a compact set of end-to-

end measurements which could exercise every rule and every

link. The mapping in between Min-Set-Cover and network

monitoring was been explored previously in [3] and [5].

ATPG progress the detection granularity to rule level by

working router configuration and data plane information.

ATPG not limited to liveness testing, but it can be applicable

for checking higher level properties like performance. Our

work was closely related to work in programming languages

and symbolic debugging. We made a preliminary tries to use

KLEE [6] and find it to be 10 times slower than the

unoptimized header space framework. We speculate this is

basically because in our framework we directly simulate the

forward path of a packet in addition of solving constraints

using an SMT solver. However, more work is needed to

understand the differences and potential opportunities.

III. PROBLEM DEFINITION

In current system, the administrator manually decides which

ping packet to be sent. Sending programs between every pair

of edge ports is neither extensive nor scalable. This system is

enough to find minimum set of end-to-end packets that travel

each link. However, doing this need a way of abstracting

across device specific configuration files generating headers

and links they reach and finally calculating a minimum set of

test packets. It is not designed to identify failures caused from

failed links and routers, bugs caused from faulty router

hardware or software, and performance problems. The

common causes of network failure are hardware failures and

software bugs, in which that problems manifest both as

reachability failures and throughput/latency degradation. To

overcome this we are proposing new system.

IV. PROPOSED SYSTEM

Fig.2 shows the architecture of proposed system

Fig. 2. ATPG system block diagram.

Based on the network model, ATPG generates the minimal

number of test packets so that every forwarding rule in the

network is exercised and covered by at least one test packet.

When an error is detected, ATPG uses a fault localization

algorithm to determine the failing rules or links. Fig. 5 is a

block diagram of theATPG system. The system first collects

 International Journal of Combined Research & Development (IJCRD)
 eISSN: 2321-225X;pISSN:2321-2241 Volume: 4; Issue: 10; October -2015

 www.ijcrd.com Page 5135

all the forwarding state from the network (step 1). This

usually involves reading the FIBs, ACLs, and config files, as

well as obtaining the topology. ATPG uses Header Space

Analysis [16] to compute reachability between all the test

terminals (step 2). The result is then used by the test packet

selection algorithm to compute a minimal set of test packets

that can test all rules (step 3). These packets will be sent

periodically by the test terminals (step 4). If an error is

detected, the fault localization algorithm is invoked to narrow

down the cause of the error (step 5). While steps 1 and 2 are

described in [16], steps 3–5 are new.

V. IMPLEMENTATION

A. Modules:

 Test Packet Generation

 Generate All-Pairs Reachability Table

 ATPG Tool

 Fault Localization

B. Modules Description:

 Test Packet Generation:

We assume a set of test terminals in the network can send and

receive test packets. Our goal is to generate a set of test

packets to exercise every rule in every switch function, so that

any fault will be observed by at least one test packet. This is

analogous to software test suites that try to test every possible

branch in a program. The broader goal can be limited to

testing every link or every queue. When generating test

packets, ATPG must respect two key constraints First Port

(ATPG must only use test terminals that are available) and

Header (ATPG must only use headers that each test terminal

is permitted to send).

 Generate All-Pairs Reachability Table:

ATPG starts by computing the complete set of packet headers

that can be sent from each test terminal to every other test

terminal. For each such header, ATPG finds the complete set

of rules it exercises along the path. To do so, ATPG applies

the all-pairs reachability algorithm described. On every

terminal port, an all- header (a header that has all wild carded

bits) is applied to the transfer function of the first switch

connected to each test terminal. He

ader constraints are applied here.

 ATPG Tool:

ATPG generates the minimal number of test packets so that

every forwarding rule in the network is exercised and covered

by at least one test packet. When an error is detected, ATPG

uses a fault localization algorithm to determine the failing

rules or links.

 Fault Localization:

ATPG periodically sends a set of test packets. If test packets

fail, ATPG pinpoints the fault(s) that caused the problem. A

rule fails if its observed behavior differs from its expected

behavior. ATPG keeps track of where rules fail using a result

function ―Success‖ and ―failure‖ depend on the nature of the

rule: A forwarding rule fails if a test packet is not delivered to

the intended output port, whereas a drop rule behaves

correctly when packets are dropped. Similarly, a link failure is

a failure of a forwarding rule in the topology function. On the

other hand, if an output link is congested, failure is captured

by the latency of a test packet going above a threshold.

IV. RESULTS

After implementing the proposed system on java

platform using Eclipse, the results obtained are as follows:

Fig.3. ATPG Tool Window

 International Journal of Combined Research & Development (IJCRD)
 eISSN: 2321-225X;pISSN:2321-2241 Volume: 4; Issue: 10; October -2015

 www.ijcrd.com Page 5136

Fig. 4. Node Window

Fig. 5. ATPG Tool Localizing the Fault

After receiving a ticket from the node 1 this ATPG tool

generates test packet and sends it to all the nodes in that path,

based on the acknowledgement of all the nodes it locates the

fault and displays the node where the problem has been found.

V. CONCLUSIONS

In current System it uses a method that is neither exhaustive

nor scalable. Though it reaches all pairs of edge nodes it could

not detect faults in liveness properties. ATPG goes much

further than liveness testing with same framework. ATPG

could test for reachability policy (by checking all rules

including drop rules) and performance measure (by

associating performance measures such as latency and loss of

test packets). Our implementation also enlarges testing with

simple fault localization scheme also build using header space

framework.

REFERENCES

[1] ―ATPG code repository,‖ [Online]. Available:

http://eastzone.github. com/atpg/

[2] ―Automatic Test Pattern Generation,‖ 2013 [Online].

Available:

http://en.wikipedia.org/wiki/Automatic_test_pattern_generatio

n

[3] P. Barford, N. Duffield, A. Ron, and J. Sommers,

―Network performance anomaly detection and localization,‖

in Proc. IEEE INFOCOM, Apr. , pp. 1377–1385.

[4] ―Beacon,‖ [Online]. Available:

http://www.beaconcontroller.net/ [5] Y. Bejerano and R.

Rastogi, ―Robust monitoring of link delays and faults in IP

networks,‖ IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1092–

1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, ―Klee: Unassisted

and automatic generation of high-coverage tests for complex

systems programs,‖ in Proc. OSDI, Berkeley, CA, USA, 2008,

pp. 209–224.

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, ―A NICE way to test OpenFlow applications,‖ in

Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,

―Netdiagnoser: Troubleshooting network unreachabilities

using end-to-end probes and routing data,‖ in Proc. ACM

CoNEXT, 2007, pp. 18:1–18:12..

[9] N. Duffield, ―Network tomography of binary network

performance characteristics,‖ IEEE Trans. Inf. Theory, vol. 52,

no. 12, pp. 5373–5388, Dec. 2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley,

―Inferring link loss using striped unicast probes,‖ in Proc.

IEEE INFOCOM, 2001, vol. 2, pp. 915–923.

[11] N. G. Duffield and M. Grossglauser, ―Trajectory

sampling for direct traffic observation,‖ IEEE/ACM Trans.

Netw., vol. 9, no. 3, pp. 280–292, Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan, ―Understanding

network failures in data centers: Measurement, analysis, and

implications,‖ in Proc. ACM SIGCOMM, 2011, pp. 350–361.

[13] ―Hassel, the Header Space Library,‖ [Online]. Available:

https://bitbucket. org/peymank/hassel-public/

[14] Internet2, Ann Arbor, MI, USA, ―The Internet2

observatory data collections,‖ [Online]. Available:

http://www.internet2.edu/observatory/ archive/data-

collections.html

[15] M. Jain and C. Dovrolis, ―End-to-end available

bandwidth: Measurement methodology, dynamics, and

 International Journal of Combined Research & Development (IJCRD)
 eISSN: 2321-225X;pISSN:2321-2241 Volume: 4; Issue: 10; October -2015

 www.ijcrd.com Page 5137

relation with TCP throughput,‖ IEEE/ACM Trans. Netw., vol.

11, no. 4, pp. 537–549, Aug. 2003.

[16] P. Kazemian, G. Varghese, and N. McKeown, ―Header

space analysis: Static checking for networks,‖ in Proc. NSDI,

2012, pp. 9–9.

[17] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren, ―IP fault localization via risk modeling,‖ in Proc.

NSDI, Berkeley, CA, USA, 2005, vol. 2, pp. 57–70.

[18] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D.

Kostic, ―A SOFT way for OpenFlow switch interoperability

testing,‖ in Proc. ACM CoNEXT, 2012, pp. 265–276.

[19] K. Lai and M. Baker, ―Nettimer: A tool for measuring

bottleneck link, bandwidth,‖ in Proc. USITS, Berkeley, CA,

USA, 2001, vol. 3, pp. 11–11.

[20] B. Lantz, B. Heller, and N. McKeown, ―A network in a

laptop: Rapid prototyping for software-defined networks,‖ in

Proc. Hotnets, 2010, pp. 19:1–19:6.

