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Abstract— Recently networks are growing wide and more 

complex. However administrators use tools like ping and trace 

route to debug problems. Hence we proposed an automatic and 

Methodical approach for testing and debugging networks called 

Automatic Test Packet Generation (ATPG). This approach gets 

router configurations and generates a device-independent model. 

ATPG generate a few set of test packets to find every link in the 

network. Test packets are forwarded frequently and it detect 

failures to localize the fault. ATPG can detect both functional 

and performance (throughput, latency) problems. We found, less 

number of test packets is enough to test all rules in networks. For 

example, 4000 packets can cover all rules in Stanford backbone 

network, while 53 are much enough to cover all links. 
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I. INTRODUCTION 

It is popularly known us, very difficult to troubleshoot or 

identify and remove errors in networks. Every day, network 

engineers fight with mislabeled cables, software bugs, router 

misconfigurations, fiber cuts, faulty interfaces and other 

reasons that cause networks to drop down. Network engineers 

hunt down bugs with various tools (e.g., Ping, trace route, 

SNMP) and track down the reason for network failure using a 

combination of accrued wisdom and 

impression. Debugging networks is becoming more harder as 

networks are growing larger (modern data centers may 

contain 10 000 switches, a campus network may serve 50 000 

users, a 100-Gb/s long-haul link may carry 100 000 

flows) and are getting complicated (with over 6000 RFCs, 

router software was based on millions of lines of source 

code, and network chips contain billions of gates.  

Fig. 1 is a simplified view of network state. Bottom of the 

figure is the forwarding state to forward each packet, consist 

of L2 and L3 forwarding information base (FIB), access 

control lists, etc. The forwarding state was written by the 

control plane (that could be local or remote) and should 

correctly implement the network administrator’s scheme. 

Examples of the scheme include: ―Security group X was 

isolated from security Group Y,‖ ―Use OSPF for routing,‖ and 

―Video traffic received at least 1 Mb/s.‖ We could think of the 

controller compiling the scheme (A) into devicespecific 

configuration files (B), which in turn determine the 

forwarding behavior of each packet (C). To ensure the 

network behave as designed, the three steps should remain 

consistent every times. Minimally, requires that sufficient 

links and nodes are working; the control plane identifies that a 

laptop can access a server, the required outcome can fail if 

links fail. The main reason for network failure is hardware and 

software failure, and this problem is recognized themselves as 

reachability failures and throughput/latency degradation. Our 

intention is to automatically find these kinds of failures. 

The intention of this paper is to generate a minimum set of 

packets automatically to cover every link in the network. 

This tool can automatically generate packets to test 

performance assertions like packet latency. ATPG detects 

errors independently and exhaustively testing forwarding 

entries and packet processing rules in network. In this tool, 

test packets are created algorithmically from the device 

configuration files and First information base, with minimum 

number of packets needed for complete coverage. Test 

packets are fed into the network in which every rule was 

exercised directly from the data plan. Since ATPG treats links 

just like normal forwarding rules, the full coverage provides 

testing of every link in network. It could be particularized to 

generate a minimal set of packets that test every link for 

network liveness. For reacting to failures, many network 

operators like Internet proactively test the 

health of the network by pinging between all pairs of sources. 

 

Organizations can modify ATPG to face their needs; for 

example, they can select to test for network liveness (link 

cover) or test every rule (rule cover) to make sure security 

policy. ATPG could be modified to test reachability and 

performance. ATPG can adapt to constraints such as taking 

test packets from only a few places in the network or using 

particular routers to generate test packets from every port. 

 

The contributions of this paper are as follows: 
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1) A survey of network operators exposing common failures 

and root causes. 

2) A test packet generation algorithm. 

3) A fault localization algorithm to separate faulty devices and 

Rules. 

4) ATPG usecases for functional and throughput testing. 

5) Evaluation of prototype ATPG system using rule sets 

gathered from the Stanford and Internet2 backbones. 

 

 
Fig. 1. Static versus dynamic checking: A scheme is compiled to 

forwarding state, and it is executed by the 

forwarding plane. 

 

II. RELATED WORK 

 

The test packets which generate automatically by 

configuration is not aware by earlier techniques. The very 

often related works we are familiar is offline tools which test 

invariants in networks. In control plane, NICE [7] tries to 

comprehensively cover code path symbolically in a controller 

applications with support of simplified switch and host models. 

In the data plane, Anteater [25] models invariants as a 

Boolean satisfiability problem which tests them against 

configurations with a SAT solver. Header Space Analysis [16] 

use geometric model for checking reachability, detecting 

loops, and for verifying slicing. Recently, SOFT [1] put 

forward to check uniformity between different Open Flow 

agent implementations which is responsible for bridging 

control and data planes in SDN context. ATPG supplement 

these checkers directly by verifying the data plane and 

exercising a important set of dynamic or performance errors 

which could not be captured. The major contribution of ATPG 

is not fault localization, but deciding a compact set of end-to-

end measurements which could exercise every rule and every 

link. The mapping in between Min-Set-Cover and network 

monitoring was been explored previously in [3] and [5]. 

ATPG progress the detection granularity to rule level by 

working router configuration and data plane information. 

ATPG not limited to liveness testing, but it can be applicable 

for checking higher level properties like performance. Our 

work was closely related to work in programming languages 

and symbolic debugging. We made a preliminary tries to use 

KLEE [6] and find it to be 10 times slower than the 

unoptimized header space framework. We speculate this is 

basically because in our framework we directly simulate the 

forward path of a packet in addition of solving constraints 

using an SMT solver. However, more work is needed to 

understand the differences and potential opportunities. 
 

III. PROBLEM DEFINITION 

 

In current system, the administrator manually decides which 

ping packet to be sent. Sending programs between every pair 

of edge ports is neither extensive nor scalable. This system is 

enough to find minimum set of end-to-end packets that travel 

each link. However, doing this need a way of abstracting 

across device specific configuration files generating headers 

and links they reach and finally calculating a minimum set of 

test packets. It is not designed to identify failures caused from 

failed links and routers, bugs caused from faulty router 

hardware or software, and performance problems. The 

common causes of network failure are hardware failures and 

software bugs, in which that problems manifest both as 

reachability failures and throughput/latency degradation. To 

overcome this we are proposing new system. 
 

IV. PROPOSED SYSTEM 

 

Fig.2 shows the architecture of proposed system 

 

 
 

Fig. 2. ATPG system block diagram. 
 

Based on the network model, ATPG generates the minimal 

number of test packets so that every forwarding rule in the 

network is exercised and covered by at least one test packet. 

When an error is detected, ATPG uses a fault localization 

algorithm to determine the failing rules or links. Fig. 5 is a 

block diagram of theATPG system. The system first collects 
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all the forwarding state from the network (step 1). This 

usually involves reading the FIBs, ACLs, and config files, as 

well as obtaining the topology. ATPG uses Header Space 

Analysis [16] to compute reachability between all the test 

terminals (step 2). The result is then used by the test packet 

selection algorithm to compute a minimal set of test packets 

that can test all rules (step 3). These packets will be sent 

periodically by the test terminals (step 4). If an error is 

detected, the fault localization algorithm is invoked to narrow 

down the cause of the error (step 5). While steps 1 and 2 are 

described in [16], steps 3–5 are new. 
 

 

V. IMPLEMENTATION 

 

A. Modules: 

 

 Test Packet Generation 

 Generate All-Pairs Reachability Table 

 ATPG Tool 

 Fault Localization 

B. Modules Description: 

 

 Test Packet Generation: 

We assume a set of test terminals in the network can send and 

receive test packets. Our goal is to generate a set of test 

packets to exercise every rule in every switch function, so that 

any fault will be observed by at least one test packet. This is 

analogous to software test suites that try to test every possible 

branch in a program. The broader goal can be limited to 

testing every link or every queue. When generating test 

packets, ATPG must respect two key constraints First Port 

(ATPG must only use test terminals that are available) and 

Header (ATPG must only use headers that each test terminal 

is permitted to send). 

 

 Generate All-Pairs Reachability Table: 

ATPG starts by computing the complete set of packet headers 

that can be sent from each test terminal to every other test 

terminal. For each such header, ATPG finds the complete set 

of rules it exercises along the path. To do so, ATPG applies 

the all-pairs reachability algorithm described. On every 

terminal port, an all- header (a header that has all wild carded 

bits) is applied to the transfer function of the first switch 

connected to each test terminal. He 

ader constraints are applied here.  

 

 

 ATPG Tool: 

ATPG generates the minimal number of test packets so that 

every forwarding rule in the network is exercised and covered 

by at least one test packet. When an error is detected, ATPG 

uses a fault localization algorithm to determine the failing 

rules or links. 

 

 Fault Localization: 

ATPG periodically sends a set of test packets. If test packets 

fail, ATPG pinpoints the fault(s) that caused the problem. A 

rule fails if its observed behavior differs from its expected 

behavior. ATPG keeps track of where rules fail using a result 

function ―Success‖ and ―failure‖ depend on the nature of the 

rule: A forwarding rule fails if a test packet is not delivered to 

the intended output port, whereas a drop rule behaves 

correctly when packets are dropped. Similarly, a link failure is 

a failure of a forwarding rule in the topology function. On the 

other hand, if an output link is congested, failure is captured 

by the latency of a test packet going above a threshold. 

 

 

IV. RESULTS 

After implementing the proposed system on java 

platform using Eclipse, the results obtained are as follows: 
 

 

Fig.3. ATPG Tool Window 
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Fig. 4. Node Window 

 

Fig. 5. ATPG Tool Localizing the Fault 

 

After receiving a ticket from the node 1 this ATPG tool 

generates test packet and sends it to all the nodes in that path, 

based on the acknowledgement of all the nodes it locates the 

fault and displays the node where the problem has been found. 

 

V. CONCLUSIONS 

 

In current System it uses a method that is neither exhaustive 

nor scalable. Though it reaches all pairs of edge nodes it could 

not detect faults in liveness properties. ATPG goes much 

further than liveness testing with same framework. ATPG 

could test for reachability policy (by checking all rules 

including drop rules) and performance measure (by 

associating performance measures such as latency and loss of 

test packets). Our implementation also enlarges testing with 

simple fault localization scheme also build using header space 

framework. 
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