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Abstract : Search-based optimization techniques  

have been implemented to a variety of software 

engineering including test generation and cost 

estimation. Various search based test generation 

techniques have been used. These are the 

techniques used only on finding test data to satisfy 

control-flow or data-flow testing criteria. 

Currently, there are so many search-based 

optimization techniques have been implemented  

such as Ant Colony Optimization and Bees Colony 

Optimization. Ant Colony Optimization  have been 

used only in control-flow testing of the programs. 

The aim of this to applying the Ant Colony 

Optimization algorithms in software data-flow 

testing. This technique uses the ant colony 

optimization to generate test data for satisfying the 

generated set of paths. 
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 INTRODUCTION 

There are various activities associated with 

software testing such as 1) finding path to cover 

criterion 2) test data generation to satisfy the path  

3) test execution by using the test data                     

4)  evaluation of test. There are many test-data 

generation techniques have been implemented.  

Random test-data generation techniques is use to 

select inputs as a random data until useful inputs 

data are found [1, 2]. This technique some time  

fail to satisfy the requirements because information 

about the test requirements is not organised.  

Symbolic test-data generation techniques is use to 

select symbolic values of variables to generate 

some algebraic equation for the constraints in the 

program and find the solution for these equation 

that satisfies a test requirement [3, 4]. Symbolic 

execution can't determine that symbolic values 

which are more potential values used for array as 

A[n] or pointer. Symbolic execution cannot work 

on floating point value as a inputs because the 

current constraint can’t solve floating point values 

 Dynamic test-data generation techniques is use to 

collect data during the execution of the program to 

determine which test data come nearest to full fill  

the requirement. Then test inputs are incrementally 

changed until it is not going to  full fill the 

requirement [5, 6]. Dynamic techniques can work 

only when if any local minima has occur because it 

depend on local search techniques such as gradient 

descent.  

Search-based optimization techniques is use to 

software engineering activities such as cost 

estimation, next release problem and test-data 

generation [7]. Several search based test-data 

generation techniques have been implemented [8, 

9, 10, 11, 12, 13]. Some of these techniques had 

focused on finding test data to satisfy a wide range 

of control-flow testing criteria (e.g., [8, 10, 11]) 

and the other techniques had concentrated on 

generating test-data for covering a number of data-

flow testing criteria [12, 13, 9].  

GENETIC ALGORITHMS is a employed search-based 

optimization technique in area  of software testing 

[7].  

There are some search-based optimizations 

techniques have been implemented like Ant 

Colony Optimization[14, 15], Particle Swarm 

Optimization [16], Bees Colony Optimization [17], 

and Artificial Immune System [18]. Ant Colony 

Optimization has been applied in the area of 

software testing in 2003 [19, 20]. Boerner and 

Gutjahr [19] described technique which use Ant 

Colony Optimization and a software called Markov 

Software usage for set of test paths for a software 
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system, and McMinn and Holcombe [20] have 

given idea on the application of ACO as a 

supplementary optimization stage for finding 

sequences of transitional statements in generating 

test data for evolutionary testing. Srivastava and 

Rai [24] proposed an ant colony optimization 

based  approach  to  test  sequence  generation  for  

control-flow based  software  testing.                               

The data-flow  testing  is  important  because  it 

augments control-flow testing criteria and 

concentrates on how a variable is defined and used 

in the program, which could lead to more efficient 

and targeted test suites.  The  results  of using ant  

colony  optimization  algorithms  in  software  

testing  which obtained so far are preliminary  and  

none of the reported results directly addresses the 

problem of test-data generation  or  path cover 

finding for data-flow based software testing. 

This paper  aims at employing the  Ant Colony 

Optimization algorithms  in  the  issue  of  software  

data-flow  testing. The  paper  presents  an  ant  

colony optimization  based on technique  for  

generating  set  of  optimal paths  to  cover  all  

definition use  associations  in the program under 

test. This technique also uses the ant colony 

optimization algorithms to generate suite of test 

data  for  satisfying  the  generated  set  of paths.   

 

II.  BACKGROUND 

The  basic  concepts  and  definitions are as follows 

A.  Ant Colony Optimization 

Ant Colony Optimization   is  a  population-based, 

general  search  technique  for  the  solution  of  

difficult combinatorial  problems,  which  is  

inspired  by  the  pheromone trail  laying  

behaviour  of  real  ant  colonies.  The  Ant Colony 

Optimization technique is also known as Ant 

System [14] and it was applied to the  travelling  

salesman  problem. In  Ant Colony Optimization , 

a set of  software  agents  called  artificial  ants  

search  for  good solutions to a given optimization 

problem. To apply  Ant Colony Optimization , the 

optimization  problem  is  transformed  into  the  

problem  of finding  the  best  path  on  a  weighted  

graph.  The  artificial  ants (hereafter ants) 

incrementally build  solutions by moving on the 

graph.  The  solution  construction  process  is  

stochastic  and  is biased  by  a  pheromone  model,  

i,e  a  set  of  parameters associated  with  graph  

components  such as  nodes  or  edges whose  

values  are  modified  at  runtime  by  the  ants.  

Figure  1 shows a generic ant colony algorithm. 

Step 1: Initialization 

 Initialize the pheromone trail 

Step 2: Iteration 

 For each Ant Repeat 

 Solution construction using the current 

pheromone trail 

 Evaluate the solution constructed 

 Update the pheromone trail 

 Until stopping criteria 

Figure 1. A generic ant colony algorithm 

The  procedure  to  solve  any  optimization  

problem  using Ant Colony Optimization  is: 

1)  Represent  the  problem  in  the  form  of  sets  

of components and transitions or by  means of a 

weighted graph that is travelled by the ants to build 

solutions. 

2)  Appropriately  define  the  meaning  of  the  

pheromone trail, i.e., the type of decision  they 

bias. This is a crucial step in the implementation of 

an  ACO algorithm.  A good definition of  the  

pheromone  trails  is  not  a  trivial  task  and  it  

typically requires insight into the problem being 

solved. 

3)  Appropriately  define  the  heuristic  preference  

to  each decision that an ant has to  take while 

constructing a solution, i.e.,  define  the  heuristic  

information  associated  to  each component  or  

transition.  Notice  that  heuristic  information  is 

crucial for good performance if local search 

algorithms are not available or cannot be applied. 

4)  If  possible,  implement  an  efficient  local  

search algorithm  for  the  problem  under  

consideration,  because  the results  of  many  ACO  

applications  to  NP-hard  combinatorial 

optimization  problems  show  that  the  best  

performance  is achieved when coupling ACO with 

local optimizers. 

5)  Choose  a  specific  ACO  algorithm  and  apply  

it  to  the problem  being  solved,  taking  the  

previous  aspects  into  

consideration. 

6)  Tune  the  parameters  of  the  ACO  algorithm.  

A  good starting point for parameter tuning is to 

use parameter settings that were found to be good 

when applying the  ACO  algorithm to similar 

problems or to a variety of other problems. 
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It should be clear that the above steps can only give 

a very rough  guide  to  the  implementation  of  

ACO  algorithms.  In addition,  the  

implementation  is  often  an  iterative  process, 

where  with  some  further  insight  into  the  

problem  and  the behaviour of the algorithm; some 

initially taken choices need to be revised. Finally, 

we want to insist on the fact that probably the most 

important of these steps are the first four, because a 

poor choice at this stage typically can not be made 

up with pure parameter fine-tuning. 

An ACO  algorithm iteratively performs a loop 

containing  

the following two basic procedures: 

1)  A  procedure  for  specifying  how  the  ants 

construct/modify solutions of the problem to be 

solved; 

2)  A procedure to update the pheromone trails. 

The construction/modification of a solution is 

erformed in a probabilistic  way. The  probability 

of adding a  new item  to the current partial 

solution is given by a function  that depends on  a  

problem-dependent  heuristic  and  on  the  amount  

of  pheromone  deposited  by  ants  on  the  trail  in  

the  past.  The updates in the pheromone trail are  

implemented as a function that depends on the rate 

of pheromone evaporation and   on the quality of 

the produced solution. 

Data-flow analysis and  testing 

Typically,  in  structural  testing  strategies  a  

program‘s structure  is  analyzed  on  the  program  

flow-graph,  i.e.,  an annotated  directed  graph  

which  represents  graphically  the information 

needed to select the test cases. 

A  control flow graph  is  also a  directed  graph  

G=(V,E),with two distinguished nodes—  a unique 

entry n0  and a unique exit  nk .   

V  is  a  set  of  nodes,  where  each  node  

represents  a statement,  and  E  is  a  set  of  

directed  edges such as   e = (n,m)  is an ordered 

pair of adjacent  nodes, called tail and  head  of  e,  

respectively.  Figure  2(a)  gives  an  example 

program Program1 and figure 2(b) gives its 

control-flow graph. 

#include<iostream.h>  

 void main()                                                              

{ 

int i, j, k, n; 

1   cin >> i >> j; 

2   if(i < 6) 

{ 

3   k = i; 

} 

else 

{ 

4   k = j; 

} 

5   n = k; 

6   while(n < 8) 

{ 

7   if(j > k) 

{ 

8   k = 2; 

} 

else 

{ 

9   n = n + k + 7; 

} 

10   n = n + 1; 

} 

11 cout << i<< j << k; 

} 

 

 

(a)                                              (b) 

Figure 2. (a) An example program  

               (b) it is control-flow graph. 

A path  p  in a  control-flow graph  is a  finite 

number of nodes in sequence connected through 

edges e.g., 1→2→3→5 and 2→4.The question in  

software  testing  is  how  to select test cases with  

the aim of uncovering as many defects as possible. 

There are many activities normally associated with 

software testing  such as  1)  path-cover finding to 

cover a certain testing criterion 2) test data 

generation to satisfy the path cover, 3) test 

execution  involving the use of test data and the 

software under test (SUT) and 4) evaluation of test 

results. Coverage  criteria  require  that  a  set  of  

entities  of  the program  control-flow  graph  to  be  

covered  when  the  tests  are executed.  A  set  of  

complete  paths  (path  cover)  satisfy  a criterion  

if  it  covers  the  set  of  entities  associated  with  

that criterion. Depending on the criterion selected,  

the entities to be covered may be derived from the 
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program control flow or form the program data 

flow.  Frankl and Weyuker in [28, 29] defined a  

family  of  popular  control  flow  and  data  flow  

test  coverage criteria. 

Data-flow  testing  considers  the  possible  

interactions between definitions and uses of 

variables. 

The variable  in  a  program  can  be associated 

with the following events: 

 A statement storing a value in a memory creates 

a definition of the variable. 

 A statement accessing a value from the memory 

location of a variable is a use of the currently 

active definition of the variable. when the 

variable appears on the right-hand side of an 

assignment statement it is called  as  

computational  use  (c-use),  when  the  variable 

appears in the predicate of the conditional 

statement it is called as predicate use (p-use) 

[29]. 

 A  statement  delete  the  currently  active  

definition  of  a variable if its value becomes 

unbound. 

A  path  is  definition clear  path  with  respect  to  

a  variable  if  it contains no new definition of that 

variable. Data flow analysis determines the  

definitions  of every variable  in the program and 

the uses that might be affected by these  definitions 

(i.e.  the  du-pairs).  Such  data  flow  relationships  

can  berepresented by the following two sets: 

 dcu(i),  the  set of all  variable  definition  which  

have definition  clear paths for node i;  

 dpu(i, j),  the set of all variable  definitions  for 

which they have definition clear paths for their 

p-uses at edge (i,j) [30] 

Using information concerning the location of 

variable  definitions and  uses, together with the 

basic static reach algorithm‘  [31], the  sets  

dcu(i)  and  dpu(i, j)  can be determined [30].  

Tables 1 and 2 show samples of the du-pairs of 

Program1. 

TABLE V.  LIST OF DCU-PAIRS FOR 

PROGRAM1. 

 

 

Dcu Variable Def-

node 

Use-

node 

Killing 

nodes 

1 A 1 3 None 

2 C 8 9 3,4 

TABLE VI.  LIST OF DPU-PAIRS OF 

PROGRAM1 

Dcu Variable Def-

node 

Use-

node 

Killing 

nodes 

1 A 1 2,3 None 

2 n 5 6,7 10 

 

VI.  CONCLUSION AND FUTURE WORK 

To our knowledge, this paper is the first work 

using ACO in the issue of data-flow testing. 

This paper aims at employing the Ant  Colony  

Optimization  algorithms  in  the  issue  of  

software data-flow  testing.  The  paper  

presented  an  ant  colony optimization based 

approach for generating set of optimal paths to  

cover  all  definition-use  associations  (du-

pairs)  in  the program  under  test.  This  

approach  uses  also  the  ant  colony 

optimization  algorithms  to  generate  suite  of  

test-data  for satisfying the generated set of 

paths. The ant colony algorithms are  adopted  

to  search  the  CFG  and  a  model  built  on  the  

program input domain in order to get the path 

cover and the test data that satisfies the selected 

path Our  future  work  will  focus  on  estimates  

the  efficiency  of ant colony  optimization  

algorithms  against  genetic  algorithms in  this  

area.  In  addition,  we  will  concentrate  on  

solving  the problem  of  constructing  the  

searching  model  for  the  program with input 

variable of boolean and  character type. 
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