
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 271

Behavioral and Performance Analysis of

Thread Safe Object Containers

 Sampath Kini K1
 Vijaya Murari

2

Computer Science Department, Computer Science Department,

NMAMIT Nitte, NMAMIT Nitte,

Karkala,Karnataka, India Karkala,Karnataka, India

Abstract: One significant problem of multithreaded applications

that is designed for better scalability is about dealing with the

performance issues such as response time and memory. This paper

focuses on a study of resource usage of thread-safe object

containers, providing insights on strategies to decide upon type of

the container for a given requirement. The paper compares

performance of synchronized containers and concurrent containers

of java and presents the impact of these thread safe object

containers in terms of resource consumption.

Keywords— Container, concurrency, multithreading

I. INTRODUCTION

A collection — also called as container — is an object that

groups multiple elements into a single unit. Collections
 [1]

 are

used to store, retrieve, manipulate, and communicate aggregate

data. Typically, they represent data items that form a natural

group, such as a (a collection of items), a mail folder (a

collection of letters), or a telephone directory. Java provides

familiar collections such as arraylist, hashmap and hashset.
However, they are not thread-safe. They show inconsistencies

when multiple threads use these object containers

simultaneously.

In section 2, we provide a brief introduction about synchronized

containers and their limitations. We also discuss features of

concurrent containers in Java. In section 3, we provide the

systematic approach
[4]

 used for implementation of performance

analysis. In section 4, we describe framework developed for

conducting analysis of thread-safe object containers. In section

5, we discuss about flowchart used system implementation. In

section 6, experimental results are captured.

II. SYNCHRONIZED AND CONCURRENT CONTAINERS

Java provides thread-safe collection wrappers via static methods

in the Collections class. Following are the synchronized

collections in java.

Collections.synchronizedCollection(coll)

Collections.synchronizedList(list)

Collections.synchronizedMap(map)

Collections.synchronizedSet(set)

These are essentially the same as wrapping each operation on

the collection in a synchronized block. New package

java.util.concurrent contains collections that are optimized to be

safe for use by multiple threads. Some of these containers are

ConcurrentHashMap, ConcurrentSkipListMap,

CopyOnWriteArrayList. These classes are generally faster than

using a synchronized version of the normal collections because

multiple threads are actually able to use them at the same time,

to a degree. These container classes get rid of memory

consistency errors by defining a happens-before relationship

between an mutable and immutable operations being performed

on containers. Concurrent container such as Concurrent

HashMap uses
[2]

fine-grained critical sections. It treats

individual element as the shared resource, not the entire hash

table array. The idea is to have the operation just lock that

element instead of entire array. If a thread is updating element e,

other threads that wanted to read/write other elements besides e

could still do so.

III. PERFORMANCE ANALYSIS APPROACH

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 272

In this section, we are capturing the systematic approach

followed for the performance analysis of the concurrent and

synchronized containers.

A. State goals and define system

 Container classes are used for holding the data items in the

memory for processing. These classes provide both mutable and

immutable operations such as read/write. Goal of the system is

develop framework for determination of resource consumption

of the individual container classes. System will have functions

for performing both mutable and immutable operations from end

user. System will have relevant graphical user interface for

specifying user inputs. System also provides pattern of resource

usage in the form of graphs or charts.

B. List Services and outcomes

System considers operations read and write on the object

container classes. The resources used by the operations depend

upon type of the operation, number of data parameters used and

size of the data.

C. Select Metrics

System considers following performance metrics while

measuring the resource consumption on each type of operation.

 Elapsed time per operation.

 time required to complete a block of n successive

operations

D. List Parameters

System considers following system parameters
[3]

 and workload

parameters.

 System Parameters: Speed of the CPU, Size of the

main memory/RAM, Heap size of JVM and Operating system

overhead

 Workload parameters: Number of threads and

Number and sizes of the call parameters.

E. Select Factors to Study

Following factors are considered

Container Type: ConcurrentHashMap, CopyOnWriteArrayList,

ConcurrentSkipListMap,Number of threads, Size of the

Heap, Sizes of the data parameters

F. Select Evaluation Technique

Measurements will be used for evaluation since all the

concerned operations have been implemented as part of

container implementation.

G. Select workload

The workload will consist of a synthetic program generating the

specified types of container operation. This program will also

monitor the resources consumed and log the measured result

H. Design experiments

A full factorial experimental design by considering all factors

mentioned above with sufficient number of experiments will be

used

I. Present results

The final result will be plotted as container versus resource

consumption in the form of graphs or charts.

IV. FRAMEWORK FOR THE SYSTEM DESIGN

We have designed a framework for the implementation of the

performance analysis of thread safe object containers. Class

diagram (Figure 4.a) is developed for it. A separate class has

been identified for each of the container type. Both mutable and

immutable operations are implemented in these container

classes. ExecuterService class of the java package named

java.util.concurrent is used for performing container operations

in multiple threads. The container element with the size of ten

bytes is chosen for workload parameter

.

FIGURE 4.A CLASS DIAGRAM OF THE SYSTEM

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 273

V. IMPLEMENTATION OF THE FRAMEWORK

In this section we are specifying key steps followed in realizing

the framework that has been designed.Java’s swing package is

used for developing user interface. The components such as

JFrame, JPanel, JSlider is used for specifying the user input for

the workload parameters. ExecuterService class is used for

performing both write and read operations in multiple threads.

JFreechart a open source library is used for showing the

comparison graphically in the system.

VI. EXPERIMENTAL RESULTS

In this section measured data for each of the container type is

compared and shown as graph.(Figure 6.A,6.B,6.C). These

experiments were conducted on a machine with dual core

processor and 2 GB RAM. Several runs of the workload are

conducted for each of container and its operation, and finally

average of all runs is considered for the comparison. An utility

function provided in Java’s system package is used for

determining elapsed time for the container’s operation.

FIGURE 6.A COMPARISON ON WRITE OPERATION

FIGURE 6.B COMPARISON ON READ OPERATION

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 274

FIGURE 6.C COMPARISON WRITE AND READ OF

COPYONWRITEARRAYLIST

VII. CONCLUSION
This paper identified the system resource usage of Java

thread safe object containers. The system resource

consumption differs across container types. Both

synchronized and concurrent versions of container differ in

their resource consumption. As we see from the graph

concurrent version of container performs better in most of

the situations with respect to response time for both read

and write operations. This paper showed that the container

CopyOnwriteArrayList has minimal response time among

all containers for read operation. However, its response

time is more for write operation among all containers.

Though each of the container type has its own specific

usage based on the need, this performance analysis will

help in deciding on the container type for a given

requirement. The presented study focused mainly on the

response time, but the proposed techniques can also be

extended for determining heap usage of it.

VIII. REFERENCES

[1] “Impact of data structure layout on performance”, 2013 21st

Euromicro International Conference.

[2] “Data layouts for object-oriented programs,” in

Proceedings of the 2007 ACM SIGMETRICS international

conference on Measurement and modeling of computer

[3] “A benchmark suite for high performance java,” Available:

http://dx.doi.org/10.1002/1096-9128(200005)12:6¡375::AID-

CPE480¿3.0.CO;2-M

[4] The art of computer systems performance analysis

