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ABSTRACT: We present Hadoop Fair Scheduler 

Protocol, a scheduler introducing this technique to a real, 

multi-server, complex and widely used system such as 

Hadoop. The scheduling discipline is based on the 

concepts of virtual time and job aging. These techniques 

are conceived to operate in a multi server system with 

tolerance to failures, scale-out upgrades, and multi-phase 

jobs a peculiarity of Map Reduce. The results indicate 

that size-based scheduling is a realistic option for Hadoop 

clusters, because HFSP sustains even rough 

approximations of job sizes. Which are based on realistic 

workloads generated via a standard benchmarking suite, 

pinpoint at a significant decrease in system response 

times with respect to the widely used Hadoop Fair 

scheduler, without impacting the fairness of the 

scheduler, and show that HFSP is largely tolerant to job 

size estimation errors.    

Keywords: Map Reduce, Performance, Data 

Analysis, Scheduling. 

1.  INTRODUCTION 

 Map Reduce has become a popular model 

for data-intensive computation in recent years. By 

breaking down each job in to small map and reduce 

tasks and executing them in parallel across a large 

number of machines, Map Reduce can significantly 

reduce the running time of data-intensive jobs. 

However, despite recent efforts toward designing 

resource-efficient map reduces schedulers, existing 

solutions that focus on scheduling at the task-level 

still offer sub-optimal job performance. The is 

because task can have highly varying resource 

requirements during their lifetime, which makes it 

difficult for task-level schedulers to effectively utilize 

available resources to reduce job execution time. The 

advent of large-scale data analytic, fostered by 

parallel frameworks such as Hadoop, Spark, and 

Naiad, has created the need to manage the resources 

of compute cluster operating in a shared, multi-tenant 

environment. Within the same company, many users 

share the same cluster because this avoids 

redundancy in physical deployments and in data 

storage, and may represent enormous cost savings. 

Initially designed for few very large batch processing 

jobs, data-intensive scalable computing frameworks 

such as map reduce are nowadays used by many 

companies for production, recurrent and even 

experimental data analysis jobs. The heterogeneity is 

substantiated by recent studies that analyze a variety 

of production-level workloads. An important fact that 

emerges from previous works is that there exists a 

stringent need for short system response times. Many 

operations, such as data exploration, preliminary 

analyses, and algorithm tuning, often involve 

interactivity, in the sense that there is a human in the 

loop seeking answers with a trial-and-error process. 

In addition, workflows schedulers such as Oozie 

contribute to workload heterogeneity by generating a 

number of small “orchestration” jobs. At the same 

time, there are many batch jobs working on big 

datasets: such jobs are a fundamental part of the 

workloads, since they transform data in to value 

transform data in to value. Due to the heterogeneity 

of the workload, it is very important to find the right 

trade-off in assigning the resources to interactive and 

batch jobs. 

The solution implements a size-based, preemptive 

scheduling discipline. The scheduler allocates cluster 

resources such that job size information which is not 

available a prior is inferred while the job makes 
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progress toward its completion, scheduling decisions 

use the concept of virtual time, in which jobs make 

progress according to an aging function cluster 

resources are “focused” on jobs according to their 

priority, computed through aging. This ensures that 

neither small nor large jobs suffer from starvation. 

The outcome of our work materializes as a full-

fledged scheduler implementation that integrates 

seamlessly in Hadoop: we called our scheduler 

HFSP, to acknowledge an influential work in the 

size-based scheduling literature.  

 

2. Literature Survey 

It shows existing system and how to overcome the 

existing system explanation of proposed system and 

its components. 

An important fact that emerges is that there 

exists a stringent need for short system response 

times. Many operations, such as data exploration, 

preliminary analyses, and algorithm tuning, often 

involve interactivity, in the sense that there is a 

human in the loop seeking answers with a trial-and-

error process. In addition, workflow schedulers such 

as Oozier [1] contribute to workload heterogeneity by 

generating a number of small “orchestration” jobs. At 

the same time there are many batch jobs working a 

big datasets: such jobs are a fundamental part of the 

workloads, since they transform data into value. Due 

to the heterogeneity of the workloads, it is very 

important to find the right trade-off in assigning the 

resources to interactive and batch jobs. 

There are mainly two different strategies 

used to schedule jobs in a cluster. The first strategy is 

to split the cluster resources equally among all the 

running jobs. A remarkable example of this strategy 

is the Hadoop Fair Scheduler [2], [3]. While this 

strategy preserves fairness among jobs, when the 

system is overloaded, it may increase the response 

times of the jobs. The second strategy is to serve one 

job at a time, thus avoiding the resource splitting. An 

example of this strategy is First-In-First-Out(FIFO), 

in which the job that arrived first is served first. 

 The problem with this strategy is that. Being 

blind to job size, the scheduling choices lead 

inevitably to poor performance: small jobs may find 

large jobs in the queue, thus they may incur in 

response times that are disproportionate to their size. 

As a consequence, the interactivity is difficult to 

obtain. Both strategies have drawbacks that prevent 

them from being used directly in production without 

precautions. Commonly, a manual configuration of 

the both the scheduler and the system parameters is 

required to overcome such drawbacks. This involves 

the manual setup of a number of “pools” to divide the 

resources to different job categories, and the fine-

tuning of the parameters governing the resources 

allocation. This process is tedious, error prone, and 

cannot adapt easily to changes in the workload 

composition and cluster configuration. In addition, it 

is often the case for clusters to be over-dimensioned , 

this simplifies resource allocation  (with abundance, 

managing resources is less critical), but has the 

downside of costly deployments and maintenance for 

resources for resources that are often left unused [4]. 

 We present the design of a new scheduling 

protocol that caters both to a fair and efficient 

utilization of cluster resources, while striving to 

achieve short response time. Our approach satisfies 

both the interactivity requirements of small jobs and 

the performance requirements of large jobs, which 

can thus coexist in a cluster without requiring manual 

setups and complex tuning: our technique 

automatically adapts to resources and workload 

dynamics. Our solution implements a size-based, 

preemptive scheduling discipline. The scheduler 

allocates cluster resources such that job size 

information – which is not available a priori is 

inferred while the job makes progress towards its 

completion. Scheduling decisions use the concept of 

virtual time, in which jobs make progress according 

to an aging function: cluster resources are “focused” 

on jobs according to their priority, computed through 

aging. This ensure that neither small nor large jobs 

suffer from starvation. The outcome of the work 

materializes a full-fledge scheduler implementation 

that seamlessly in Hadoop [5]   

 

3. Traditional Scheduling 

Traditional Scheduling processor Sharing 

(PS) and First Come First Serve (FCFS) are arguably 

the two most simple and ubiquities scheduling 

disciplines in use in many system for instance, Fair 

and FIFO are two schedulers for Hadoop, the first 

inspired by FCFS, and the second by process 

scheduling. In FCFS, jobs are scheduled in the order 
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of their submission, while in PS resources are divided 

equally so that each active job keeps progressing. In 

loaded system, these disciplines have server 

shortcomings in FCFS, large running jobs can delay 

significantly small ones in PS, each additional job 

delays the completion of all the others. In order to 

improve the performance of the system in terms of 

delay, it is important to consider the size of the jobs. 

Size-based scheduling adopts the idea of giving 

priority to small jobs as such they will not be slowed 

down by large ones. The Shortest Remaining 

Processing Time (SRPT) policy, which prioritizes 

jobs that need the least amount of work to complete, 

is the one that minimizes the mean response time (or 

sojourn time), that is the time that passes between a 

job submission and its completion [6] the below 

figure provides an example that compares PS to 

SRPT in this case two small jobs –j2 and j3- are 

submitted while a large job j1 is running. While in PS 

in three jobs run (slowly) in parallel in a size-based 

discipline j1 is preempted.   

 

 

Figure 1.Comparison between PS and SRPT  

The result is that j2 and j3 complete earlier. Like 

most size-based scheduling techniques, SRPT 

temporarily suspends the progress of lower-priority 

jobs fortunately, this is not a problem in a batch 

system like Hadoop, for which results are usable only 

after the jobs is completed. While policies like SRPT 

improve means response time, they may incur in 

starvation if small jobs are continuously submitted, 

large ones may never receive service[7],[8] this 

results in job mistreatment. To avoid starvation, a 

common solution is to perform job aging. With job 

aging, the system decrease virtually the size of jobs 

waiting in the queue, and keeps them sorted 

according to their virtual size, serving the one with 

the current smaller virtual size. Job size is perfectly 

known a priori, the FSP discipline exploits aging to 

provide a strong dominance fairness guarantee no job 

completes in FSP later than it would in PS.FSP also 

guarantees excellent results in terms of both job 

response time and fairness when job sizes are not 

know exactly for these reason, the design of HFSP is 

guided by the abstract ideas beyond FSP. 

4. Hadoop Fair Sojourn Protocol (HFSP) 

The Hadoop Fair Sojourn Protocol (HFSP) 

is a size-based scheduler with aging for Hadoop. 

Implementing HFSP raises a number of challenges a 

few come from Map Reduce itself. Example the fact 

that a job is composed by tasks while others come 

from the size based nature of the scheduler in a 

context where the size of the jobs is not known a 

priori. 

 

Jobs: In Map Reduce jobs are scheduled at the 

granularity of tasks and they consist of two separate 

phases called MAP and REDUCE. We evaluate job 

sizes by running a subset of sample tasks for each 

job, however, reduce tasks can only be launched only 

after the Map phase is complete. The scheduler thus 

splits logically the job in the two phases and treats 

them independently therefore the scheduler consider 

the job as composed by two parts with different sizes, 

one for the MAP and the other REDUCE phase. 

When a resource is available for scheduling a MAP 

(resp. REDUCE) task, the scheduler sorts jobs based 
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on their virtual Map (resp. REDUCE) sizes, and 

grants the resource to the job with the smallest size 

for that phase. 

Estimated and virtual size: The size of each phase 

to which we will refer as real size, ia unknown until 

the phase itself is complete. The scheduler therefore 

works using an estimated size starting from this 

estimate the scheduler applies job aging I.e., it 

computes the virtual size, based on the time spent by 

the job in the waiting queue. The estimated and the 

virtual sizes are calculated by two different modules 

the estimation module, that outputs the estimated size 

and the aging module that takes in input the estimated 

size and applies an aging function. 

5. Modules in phase 

1. The Estimation Module 

2. The Aging Module 

3. The Scheduling Policy 

The Estimation Module: The role of the estimation 

module is to assign a size to a job phase such that, 

given two jobs, the scheduler can discriminate the 

smallest one for that phase. When a new job is 

submitted, the module assigns for each phase an 

initial size Si. Which is based on the number of its 

tasks .The initial size is necessary to quickly infer job 

priorities. A more accurate estimate is done 

immediately after the job submission, through a 

training stage in such a stage a subset of task called 

the training tasks is executed and their execution time 

is used to update Si to a final estimated size Sf. 

Choosing t induces the following trade-off a small 

value reduces the time spent in the training stage at 

the expense of inaccurate estimates a large value 

increases the estimation accuracy but result in a 

longer training stage. The scheduler is designed to 

work with rough estimates therefore a small t is 

sufficient for obtaining good performance. 

 

 

The Aging Module: The aging module takes as input 

the estimated sizes to compute virtual sizes. The use 

of virtual size is a technique applied in many 

practical implementations of well-known schedulers 

it consists in keeping track of the amount of the 

remaining work for each job phase in a virtual “fair” 

system and update it every time the scheduler is 

called. The result is that even if the job doesn’t 

receive resources and thus its real size does not 

decrease, in the virtual system the job virtual size 

slowly decreases with time. 

Job aging avoids starvation, achieves fairness, and 

requires minimal computational load, since the 

virtual size does not incur in costly updates. 

The Scheduling Policy: In this section we describe 

how the estimation and the aging modules coexist to 

create a Hadoop scheduler that strives to be both 

efficient and fair.  

 

DEV: This workload is indicative of a 

“development” environment, where by users rapidly 

submit several small jobs to build their data analysis 

tasks, together with jobs that operate on larger 

datasets. This workload is inspired is inspired by the 

Facebook 2009 trace observed by Chen et al, the 

mean interval between job arrivals is µ = 30 s. 
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Test: This workload represents a “test” environment, 

whereby users evaluate and test their data analysis 

tasks on a rather uniform range of dataset sizes, with 

20% of the jobs a large dataset. The mean interval 

between jobs is µ = 60 s. 

PROD: This workload is representative of a 

“production” environment, whereby data analysis 

tasks operate pre-dominantly on large datasets. The 

mean interval between jobs is µ = 60 s. 

6. Conclusion: The work was motivated by the 

increasing demand for system responsiveness, driven 

by both interactive data analysis tasks and long-

running batch processing jobs, as well as for a fair 

and efficient allocation of system resources. We 

presented an novel approach to the resource 

allocation problem, based on the idea of size-based 

scheduling. The effort materialized in a full fledged 

scheduler that we called HFSP, the Hadoop Fair 

Sojourn Protocol, which implements a size-based 

discipline that satisfies simultaneously system 

responsiveness and fairness requirements. The work 

raised may challenges evaluating job sizes online 

without wasting resources avoiding job starvation for 

both small and large jobs, and guaranteeing short 

response times despite estimation errors were the 

most noteworthy. 

Our Feature work is related to job preemption. We 

are currently investigation a novel technique to fill 

the gap between killing running tasks and waiting for 

tasks to finish. Indeed killing a task too late is a huge 

waste of work, and waiting for a task to complete 

when it just started is detrimental as well. Our next 

goal is thus to provide a new set of primitives to 

suspend and resume tasks to achieve better 

preemption. 
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