
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 90

Mitigating Data Skew Using Map Reduce

Application

Ms. Archana P.M Mr. Malathesh S.H

4
th
sem, M.Tech (C.S.E) Associate Professor C.S.E Dept.

M.S.E.C, V.T.U Bangalore, India M.S.E.C, V.T.U Bangalore, India

 archanaanil062@gmail.com mhavanur@gmail.com

Abstract-There is a growing need for ad-hoc

analysis of extremely large data sets, especially

at internet companies where innovation critically

depends on being able to analyze terabytes of

data collected every day. Parallel database

products, over a solution, but are usually

prohibitively expensive at this scale. Besides,

many of the people who analyze this data are

entrenched procedural programmers. The

success of the more procedural map-reduce

programming model, and its associated scalable

implementations on commodity hardware, is

evidence of the above. However, the map-reduce

paradigm is too low-level and rigid, and leads to

a great deal of custom user code that is hard to

maintain, and reuse. The map reduce is an

effective tool for parallel data processing. One

significant issue in practical map reduce

application is the data skew. The imbalance of

the amount of the data assigned to each tasks to

take much longer to finish than the others.

Keywords: Map Reduce, Data Skew, Sampling,

Partitioning.

 1 INTRODUCTION

Hadoop is an open source framework

written in java that allows distributed processing of

large datasets across clusters of computers using

simple programming models. A Hadoop frame-

worked application works in an environment that

provides distributed storage and computation across

clusters of computers. Hadoop is designed to scale

up from single server to thousands of machines,

each offering local computation and storage. Map

reduce is an important programming model for

large-scale data-parallel applications such as web

indexing, data mining, and scientific simulation.

Hadoop is an open source implementation of Map

Reduce enjoying wide adoption and is often used

for short jobs. The completion of the job in the

Hadoop depends on the slowest running task in the

job. If one task is significantly running task in the

job. If one task is significantly longer to finish than

others. It can delay the progress of entire jobs. The

straggler can be happen from various region like

among which data skew is important one. The data

skew refers to the imbalance the amount of work

required to process such data. Hadoop’s

performance is closely tied to its task scheduler,

which implicitly assumes that cluster nodes are

mailto:archanaanil062@gmail.com
mailto:mhavanur@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 91

homogeneous and tasks make progress linearly, and

uses these assumptions to decide when to

speculatively re-execute tasks that appear to be

stragglers[2].

1.1The main objective of this paper summarized

as follows.

 Implement the method for general user

defined Map reduce programs. The

method has better approximation to the

distribution of the intermediate data.

 The LIBRA can adjust the work load

allocation and deliver improved

performance even in the absence of data

skew when the performance underlying

computing platform.

 Implement the innovative approach to

balance the load among the reduce tasks

which supports the split of large key

when application semantics permit.

 Implement the LIBRA in the Hadoop

and evaluate the performance for the

some popular applications.

 The LIBRA performance is higher than

the other. The result will show that

LIBRA can improve the job execution

time to a factor 4.

2 LITERATURE SURVEY

Our implementation of Map Reduce runs on a

large cluster of commodity machines and is highly

scalable: a typical Map Reduce computation

processes many terabytes of data on thousands of

machines. Programmers find the system easy to

use: hundreds of Map Reduce programs have been

implemented and upwards of one thousand Map

Reduce jobs are executed on Google's clusters

every day[1]. The standard approach to handling

skew in parallel systems is to assign an equal

number of data values to each partition via hash

partitioning or clever range partitioning. These

strategies effectively handle data skew, which

occurs when some nodes are assigned more data

than others. Computation skew, more generally,

results when some nodes take longer to process

their input than other nodes and can occur even in

the absence of data skew | the runtime of many

scientific tasks depends on the data values

themselves rather than simply the data size. These

histograms were also shown earlier to be optimal

for join selectivity estimation, thus establishing

their universality. In this paper, presents a new

strategy called LIBRA (Lightweight

Implementation of Balanced Range Assignment) to

solve the data skew problem for reduce-side

applications in Map Reduce. Compared to the

previous work, our contributions include the

following: We propose a new sampling method for

general user defined Map Reduce programs. The

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 92

method has a high degree of parallelism and very

little overhead, which can achieve a much better

approximation to the distribution of the

intermediate data. We use an innovative approach

to balance the load among the reduce tasks which

supports the split of large keys when application

semantics permit. Figure 1 shows that with our

LIBRA method, each reducer processes roughly the

same amount of data.

Figure 1: scenario of proposed system

Data skew mitigation in LIBRA consists of

the following steps:

 Small percentage of the original map tasks

are selected as the sample tasks. They are

issued first whenever the system has free

slots. Other ordinary map tasks are issued

only when there is no pending sample task

to issue.

 Sample tasks collect statistics on the

intermediate data during normal map

processing and transmit a digest of that

information to the master after they

complete.

 The master collects all the sample

information to derive an estimate of the

data distribution, makes the partition

decision and notifies the worker nodes.

 Upon receipt of the partition decision, the

worker nodes need to partition the

intermediate data generated by the sample

tasks and already issued ordinary map tasks

accordingly. Subsequently issued map tasks

can partition the intermediate data directly

without any extra overhead.

Reduce tasks can be issued as soon as the

partition decision is ready. They do not

need to wait for all map tasks to finish.

In a Map Reduce system, a typical job execution

consists of the following steps: 1) After the job is

submitted to the Map Reduce system, the input files

are divided into multiple parts and assigned to a

group of map tasks for parallel processing. 2) Each

map task transforms its input (K1, V1) tuples into

intermediate (K2, V2) tuples according to some

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Reducer Reducer Reducer

(intermediates) (intermediates) (intermediates)

Partitioner Partitioner Partitioner Partitioner

s
h

u
ff
li
n

g

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 93

user defined map and combine functions, and

outputs them to the local disk. 3) Each reduce task

copies its input pieces from all map tasks, sorts

them into a single stream by a multi-way merge,

and generates the final (K3, V3) results according

to some user defined reduce function.

2.1 Algorithm:

In this section the sampling and partitioning

algorithm in LIBRA as shown below. Our goal is to

balance the load across reduce tasks.

 The algorithm consists of three steps:

1) Sample partial map tasks

2) Estimate intermediate data distribution

3) Apply range partition

In the following, we will describe the details of

these steps.

Problem Statement

We first give a formulation of the intermediate data

between the map and the reduce phases can be

represented as a set of tuples: (K1,C1),

(K2,C2),….,(Kn,Cn), where Ki represents a distinct

key in the map output, and Ci represents the number

of tuples in the cluster of Ki. Without loss of

generality, we assume that Ki < Ki+1 in the above

list. Then our goal is to come up with a range

partition on keys which minimizes the load of the

largest reduce task. Let r be the number of reduce

tasks. The range partition can be expressed as: 0 =

pt0 < pt1 < … < ptr = n with reduce task i taking

responsibility of keys in the range of

. Following the cost model

proposed by previous work [3], [4],[5] we define

the function Cost(Ci) as the computational

complexity of processing the cluster Ki in reduce

tasks which must be specified by the users. For

example, the cost function of the sort application

can be estimated as Cost(Ci) = Ci (for each cluster

Ki, reducers only need to output Ci tuples directly).

For reduce side self-join application, the cost

function should be ci
2
 since reducers need to output

Ci tuples for each tuple in cluster Ki. By specifying

the exact cost function, we can balance the

execution time of each reducer one step further.

Then the objective function can be expressed as

follows:

 Since the number of unique keys can be large,

calculating the optimal solution to the above

problem is unrealistic. Therefore, we present a

distributed approximation algorithm by sampling

and estimation.

Sampling Strategy

After a specific map task j is chosen for

sampling, its normal execution will be plugged in

with a lightweight sampling procedure. Along with

the map execution, this procedure collects a statistic

of (K
j
i ,C

j
i) for each key K

j
i in the output of this

task, where C
j
i is the frequency (i.e., the number of

records) of key K
j
i . Since the number of such (K

j
i

;C
j
i) tuples can be on the same order of magnitude

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 94

as the input data size, we keep only a sample set

Ssample containing the following two parts:

_ Slargest: p tuples with the largest C
j
i

_ Snormal: q tuples randomly selected from the rest

according to uniform distribution (excluding tuples

in Slargest)

This sampling task then transmits the following

statistics to the master: the sample set Ssample =

Slargest U Snormal, the total number of records (TRj)

and the total number of distinct clusters (TCj)

generated by this task. The size of the sample set p

+ q is constrained by the amount of memory and the

network bandwidth at the master. The larger p + q

is, the more accurate approximation to the real data

distribution we will achieve. In practice, we find

that a small p+q value has already reached a good

approximation and brings negligible overhead.

Estimate Intermediate Data Distribution

After the completion of all sample map

tasks, the master aggregates the sampling

information in the above step to estimate the

distribution of the data. It first combines all the

sample tuples with the same key into one tuple

(Ki,Ci) by adding up their frequency It then sorts

these combined tuples to generate an aggregated list

L. Suppose there are m maps for sampling and

S
j
sample

is the sample set of map j. Then the

aggregated list L is:

To calculate the total number of records TR, we

simply sum up the record counts in all sample map

tasks. However, calculating the total number of

distinct clusters TC is hard because clusters

processed by different map tasks may share the

same key and hence should not be counted twice.

For example, assume that there are two sample map

tasks and their sample sets are: {(A; 10), (B; 5), (C;

3), (D; 2), (E; 2)}, {(A; 20), (B; 3), (D; 1), (F; 1),

(H; 1)}, in which p = 2 and q = 3. By summing up

the frequencies of the same key, the merged sample

set Ssample is {(A; 30), (B; 8), (C; 3), (D; 3), (E; 2),

(F; 1), (H; 1)}.

Range Partition

We adopt the above approximation to the

data distribution to get an approximate solution to

the range partition. We need to generate a list of

partition points in the aggregated list L where

and minimize:

We use dynamic programming to solve this

optimization problem: let F(i; j) represent the

minimum value of the largest partition sum of

cutting the first i items into j partitions,

and

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 95

Then the recursive formulation of F(i; j) is:

 The partition decision can be derived from

optimized decision of F(i; j).

3. PERFORMANCE EVALUATION

 A LIBRA program can be run on Grep

application and analyzed the split of data for

various partitions, also checked the job execution

time. The histogram and the time for all the

partitions are shown below:

4. RESULTS

Our research work on this paper signify the

program for the different partitioner, and found that

the new sampling strategy improves the

performance significantly, where the data gets

evenly distributed across all the reducers, thereby

reducing the data skew. Also, the job execution

times gets improved significantly.

CONCLUSION

The Map Reduce programming model has

been successfully used at Google for many different

purposes. We attribute this success to several

reasons. First, the model is easy to use, even for

programmers without experience with parallel and

distributed systems, since it hides the details of

parallelization, fault-tolerance, locality

optimization, and load balancing. Second, a large

variety of problems are easily expressible as Map

Reduce computations. Data skew mitigation is

important in improving Map Reduce performance.

This paper has presented LIBRA, a system that

implements a set of innovative skew mitigation

1 3 5 7 9 11 13 15

550

600

650

700

750

Reducers --->

K
ey

s
--

->

Grep - LIBRA implementation

Number of keys
processed at
reducers-
HashPartitioner

1

2

0 5 10

P
ar

ti
ti

o
n

er
--

->

Time(seconds)

Grep-LIBRA

Time taken-
BinaryPartitione
r

Time taken-
KeyFieldBasedP
artitioner

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 96

strategies in an existing Map Reduce system. One

unique feature of LIBRA is its support of large

cluster split and its adjustment for heterogeneous

environments. In some sense, we can handle not

only the data skew, but also the reducer skew.

REFERENCES

[1] J. Dean and S. Ghemawat,“Mapreduce:

simplified data processing on large clusters,”

Commun. ACM, vol. 51, January 2008.

 [2] Y. Kwon, M. Balazinska, and B. Howe, “A

study of skew in mapreduce applications,” in Proc.

of the Open Cirrus Summit, 2011.

[3] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia,

“Skew-resistant parallel processing of feature-

extracting scientific user-defined functions,” in

Proc. of the ACM symposium on Cloud computing

(SoCC), 2010.

[4] S. Ibrahim, J. Hai, L. Lu, W. Song, H.

Bingsheng, and Q. Li, “Leen: Locality/fairness-

aware key partitioning for mapreduce in the cloud,”

in Proc. of the IEEE International Conference on

Cloud Computing Technology and Science

(CloudCom), 2010.

[5] G. Benjamin, A. Nikolaus, R. Angelika, and K.

Alfons, “Handling data skew in mapreduce,” in

Proc. of the International Conference on Cloud

Computing and Sesrvices Science (CLOSER), 2011.

