
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 5; May -2015

 www.ijcrd.com Page 827

ABSTRACTION OF TEST CASES FROM INPUT JAVA

PROGRAM

 Dr. R N Kulkarni, Nidhi Jain C, Rashmi G, Vaishali B J, Zakiya Niyazi

Department of Computer Science & Engineering

BITM, Ballari, Karnataka, India

Abstract: Now a day, we find there is a tremendous change in

the software industry, where both hardware and software are

changing rapidly. The organizations which are already automated

have to make changes in their processing activities. From the last

two decades a new discipline has been started where the

developing organization will develop the required application for

the client, subsequently they hand over the testing part to the third

party organization. The testing organization consists of the skilled

and experienced peoples whose responsibility is to test the

software against the requirement and after testing the test reports

will be sent to the developing organization. While preparing the

test cases, the testing organization spends a lot of time in

understanding application code or program code; design the test

cases and finally testing the application. To overcome this

problem, in our project we are proposing an automatic tool which

abstracts the test cases from the input java program. This

abstraction is carried out by restructuring input program followed

by the abstraction of test cases and retesting these abstracted test

cases on the program to verify for its correctness.

Key Words: Restructuring, Abstraction, Test cases,

Correctness.

1. INTRODUCTION

The traditional approach of the software testing comprises of

five stages – planning and control, test analysis and design, test

implementation and execution, evaluation and reporting and test

closure. In the software testing one of the challenging tasks is to

select the test inputs which need to be pre-defined. If one of the

test cases does not hold good then entire testing processes need to

be executed for the test suite which increase the complexity to

analyze the code and also help to analyze the efficiency of test-

cases. To overcome these drawbacks of traditional approach a

tool is generated to analyze the program written in Java-

language, which abstracts test case by restructuring the program

without affecting the functionalities, evaluates the correctness of

the test cases abstracted and maximizes the verification of code

with minimum complexity.

The purpose of a test case is to document the steps and

conditions under which a particular test scenario must be

executed, along with the expected result. Test cases are written

in the test analysis and design phase of the software testing

cycle, wherein the test objectives are transformed into test

conditions. Effective test cases are necessary to achieve

complete quality verification and validation of the application

under test.

Abstraction of test cases also provides the users to easily

reproduce the steps that were undertaken to uncover a defect that

as detected during test. Test-case is basically a description of test

where it has the components that describe the input, event or

action and expected response to determine if feature is

working correctly.

2. LITERATURE SURVEY:

 In the paper [1], the author discusses about various approaches

for the generation of test cases viz, UML based, graph based,

formal methods, web application, web service, and combined.

From this paper we are using web based approach to abstract the

test cases for our project. But this paper doesn‟t discuss about the

approach to abstract the test cases from specific program.

In the paper [2], the author discusses about various approaches

for the generation of test cases from UML diagram viz, UML

Structured Diagram, UML Behavioral Diagram and

Combinational Approach. But using UML diagrams for

generation of test cases will not attain maximum test coverage

and even if it generates significant number of tests it will have

less test coverage.

In the paper [3], the author presents the implementation

techniques of a tool called 1-click test executor, which fully

automates all processes necessary for Java program testing. The

tool significantly reduces the time required for high-coverage

testing, from several minutes to just a few seconds. But this paper

doesn‟t discuss about checking the correctness of the test cases.

In the paper [4], the author presents comprehensive techniques

such as the mutation testing, input/output analysis and data

mining for evaluation of test cases that are generated. From this

paper we are using a technique called the input/output analysis

for evaluation of test cases.

In the book [5], the author has given an abstract model of the

„traditional‟ testing process which consist of four steps as a)

Design Test Cases, b) Prepare Test Data, c) Run program with

test data and d) Compare results to test cases. We have used this

process for abstraction of test cases from input java program.

In the book [6], the author discusses about various testing

methodologies, levels of testing and how test case information

should be displayed.

3. TERMINOLOGY

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 5; May -2015

 www.ijcrd.com Page 828

a. Restructuring:
Restructuring is the transformation of one representation

form to another at the same abstraction level.[7] The input

java code is restructured by removing the comment lines,

spaces, and it breaks the line such that only one statement is

included in each line. The transformation preserves the

functionality of the program. At the end of this phase the

input java program is in structured from.

b. Abstraction:
Abstraction is the act of representing essential features

without including the background details or explanations.

Test cases are abstracted from the structured code and the

output is displayed in the form of table, consisting of test id,

possible input, expected output and remarks.

c. Retesting:
Test cases that are abstracted are re-tested, by giving the

possible input from the abstracted table to the program. The

output obtained from the program is compared for the

correctness with the output of the abstracted table.

d. Test suites:
It is the collection of the test cases that are intended to be

used to test a software program to show that it has some

specified set of behaviour.

4. PROPOSED METHODOLOGY:
Our project proposes a methodology that abstract test cases from

the input java program. The tool accepts the input program and

automatically abstracts the test cases without any user intervention

in the process and checks for the correctness of the test cases

obtained. The methodology comprises the following steps:

 4.1. Restructuring: Initially scan the program, restructure

the code by placing the methods in call in sequences order and

arranging the classes in inheritance sequence.

/* Algorithm for the Restructuring */

Input: Executable „java‟ program

Output: Restructured java code stored in a file

1. [Restructuring of the java code]

1.1 Remove the comment lines, if any.

1.2 Remove the blank lines, if any.

1.3 Break the line, if multiple statements are present in a single

line or if selection statements (if, while, do-while, for) are

encountered.

1.4 Assign line number to each physical statement of the

program.

1.5 Store the obtained output in a file.

4.2. Abstraction: Abstraction is the act of representing

essential features without including the background details or

explanations.

 /* Algorithm for the Abstraction */

 Input: Restructured file

 Output: Test suite in a XL file

1. Scan the entire program and read each statement.

1.1 Identify the variables from the restructured program.

1.2 Based on the data type of variable, boundary value analysis

is done within the range of that type.

1.3 For the identified variables in a program test suite is

generated and it sent to XL file.

4.3. Retesting: Test cases that are abstracted are re-tested, by

giving the possible input from the abstracted table to the

program. The output obtained from the program is compared

for the correctness with the output of the abstracted table.

 /* Algorithm for the Retesting */

 Input: One entry from an abstracted test cases table

 Output: Correctness of test cases in XL-sheet

1. [Retesting of abstracted test cases]

1.1 One of the possible outcome of the abstracted test

case table is taken.

1.2 The above outcome is given as an input to the

executable java progam.

1.3 Obtained output is cross verified with the output of

the abstracted test case table.

 5. CASE STUDY
The proposed procedure is implemented for number of

„java‟ programs and the results we got are correct and

complete.

[A sample 'java' program]

class Addition

{

 @Test

 public static void main(String[] args)

 {

 int var1 = 10;

 int var2 = 20;

 int result = var1 + var2;

 System.out.println(“A =”+var1+

 “B =”+var2+ “C =”+result);

 }

}

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 5; May -2015

 www.ijcrd.com Page 829

OUTPUT

Fig 5.1 Home page

Fig 5.2 Restructuring

Fig 5.3 Abstraction of test cases

 REFERENCES:

[1] Ebrahim Shamsoddin-Motlagh

“A Review of Automatic Test Cases Generation” ,

International Journal of Computer Applications (0975 –

8887) Volume 57– No.13, November 2012.

[2] S. Shanmuga Priya, Dr. P. D. Sheba, “TEST CASE

GENERATION FROM UML MODELS – A SURVEY”

International Journal of Emerging Technology and

Advanced Engineering Website: www.ijetae.com

(ISSN 2250-2459 (Online), An ISO 9001:2008

Certified Journal, Volume 3, Special Issue 1, January

2013)

[3] Supasit Monpratarnchai, Shoichiro Fujiwara, Asako

Katayama, Tadahiro Uehara, “An Automated Testing

Tool for Java Application Using Symbolic Execution

based Test Case Generation” 2013 20th Asia-Pacific

Software Engineering Conference

[4] Mohammad Reza Keyvanpour, Hajar Homayouni

and Hossein Shirazee, “Automatic Software Test Case

Generation: An Analytical Classification Framework”

International Journal of Software Engineering and Its

Applications, Vol. 6, No. 4, October, 2012.

[5] Ian Sommervillie,“Software Engineering”, 9th

Edition, Addison-Wesley.

[6] Paul C.Jorgensen, “Software Testing- A

Craftsman‟s approach”, third edition, Auerbach

publications.

[7] Dr. Shivanand M. Handigund and Rajkumar N.

Kulkarni,] “An Ameliorated Methodology for the

Abstraction and Minimization of Functional

Dependencies of legacy „C‟ Program Elements”

International Journal of Computer Applications (0975 –

8887) Volume 16– No.3, February 2011

5. CONCLUSION

In this paper we have proposed an automatic tool for the

abstraction of the test cases from the input java program. This

abstraction is achieved by restructuring, then abstraction of test

.

cases and re-testing the program using the abstracted test cases.

The tool is tested for its correctness and completeness.

