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The smallest positive zeros of the confluent hyper geometric function of 

first kind were first calculated by Slater on EDSAC – I computer in late 

1960 and tabulated up to seven places of decimals. In the present paper 

the author has tried to develop an algorithm to compute these real zeros 

and based on this algorithm the author has further attempted to compute 

and tabulate next higher zeros of CHF function for a variety of test cases 

with greater accuracy and efficacy. The source code is written in the C 

language and the program is running successfully under the Linux/UNIX 

environment and giving precise output results. 
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1.INTRODUCTION 

 

It has been proved in literature that every confluent hyper geometric 

function (CHF) 1F1[a;b;x] has at most only a finite number of real zeros 

for any fixed values of a and b [1]. Some more detailed investigation of 

the number of real zeros of 1F1[a;b;x] when a and b are real, has been 

done in [2].  
 

The confluent hyper-geometric function is a solution of the differential 

equation, 
 

Z1F1
”
(a; b; Z) + (b - Z)1F1

’
(a; b; Z)  - a 1F1(a; b; Z) = 0  (1.1) 

 

Where a, b, and Z may all be complex. An exact solution of this 

equation is given by Kummer’s series [3].  A well - known property of 

analytic function is that it can be expressed as an infinite product in 

terms of its zeros [4]. Since CHF function 1F1[a;b;x] is an analytic 

function of x except when b is zero or a negative integer, we can write 
 

                                      ∞ 

         1F1[a;b;x]  =  e
ax/b

∏ [1 – x/xn]e
x/xn 

   (1.2) 

                              n=0 

 

where x0, x1,…………., xn are the real and imaginary zeros of the 

function. 
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For n = 0, 

                                               x             ax     x 

  1F1[a;b;x]  ≈  [1 - ─ ] exp [  ─  + ─ ]                           (1.3) 

                                               x0             b     x0 

 

Where, x0 is the real zero nearest to the plane x = 0. This provide us a first 

approximation to the numerical value of  1F1[a;b;x] for real values or complex 

values of x near  x0. Thus having found the zeros we can construct the function 

numerically. 

 

2. APPROXIMATION TO THE ZEROS   

 

From the expansion of Kummer’s function in terms of Bessel functions[5], 

Tricomi[6] has deduced that if Xr is the rth positive zero of 1F1[a;b;x] and jb-1,r is 

the rth positive zero of the Bessel function J b-1(x)  then,  for k ≡ ½b – a large, 

 

 

                              jb-1,r
2       

┌
             

2b(b-2) +
 
jb-1,r

2     
┐

 

            Xr       =           ————   │1 + ——————————     │ + o(k
-4

)            (2.1) 

                                4k      └                48k
2                  

┘
 

 

 

Using the approximation for
 
jb-1,r given by Watson[4], Slater[5] has 

deduced a very useful approximation for Xr and found that  

 

 

            Jb-1,r   ≈   Л( r + ½b - ¾)                (2.2) 

 

Therefore, 

 

                                   Л
2
( r + ½b - ¾)

2
 

  Xr  ≈    −−−−−−−−−−−                                     (2.3) 

                                         2b – 4a 

 

The above approximation is sufficiently accurate to provide a starting-

point for the nesting process described in the next section, even in the 

case of the smallest positive zero X0. 

 

3. NESTING PROCESSES  

 

The rough evaluation of the zeros of CHF function is possible with the 

help of an ordinary calculating machine, but, if high accuracy is required 

and an electronic computer is available, it is more profitable to develop 

programs based on the process described below: 

 

For the solution of CHF function let us calculate an initial estimate of 

the zero k by (2.3) and using Newton’s approximation, we have 
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  X1  =  k – y (k)/y’(k)                                                 (3.1) 

 

             

                                      a 

 Where, y’(k) =  − 1F1[a+1;b+1;k] 

                                      b 

 

Similarly, we have  

 

                                          b 1F1[a;b;X0]   

  X1  = X0  - −−−−−−−−−−−−−−           (3.2) 

                                          a 1F1[a+1;b+1;X0] 

 

 

and the cycle proceeds until, 

 

                                             b 1F1[a;b;Xn]   

  Xn+1  = Xn  - −−−−−−−−−−−−−−          (3.3) 

                                             a 1F1[a+1;b+1;Xn] 

 

 

4. EVALUATION OF ZEROS 

 

The recurrence relation (3.3) includes evaluation of CHF function, so to 

evaluate this function a direct summation of Kummer’s Series by taking 

finite number of terms is presented. In originally testing the program for 

CHF function, the results were compared against tables given for real 

values of arguments [3,5]. The Coulomb wave function and the Bessel 

function may also be evaluated using tables, along with the Hankel 

function [3,7,14]. The most comprehensive program we could find on 

this subject still had regions of difficulty where an answer could not be 

obtained [8]. Nardin [10, 11] gave a numerical evaluator for the 

confluent hypergoemetric function for complex arguments with large 

magnitudes. Recently an evaluator for the generalized hyper-geometric 

series has been presented by the same group of authors [12]. The 

wronskian of a function is, in general, considered to be of great use in 

checking tables of function [13]. The smallest positive zeros ( for r = 1) 

of CHF function has been tabulated by Slater [1, 5]. 

 

5. SAMPLE DATA AND PROGRAMS   

 

Here the next ( higher surfaced ) zeros have been evaluated by taking, 

 

1) r = 2, 3, 4, 5, and 6; 

2) a = -4.0(0.1)-0.1;  

3) b = 0.1(0.1)2.5; 
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The computer program (written in C language) and output results have 

been tabulated by Bisht [15] in Appendix -I and Appendix -II.  

  

 

 

 

6. TIME REQUIREMENTS 

 

Since for the evaluation of a single zero of CHF, the 1F1 function has to 

be approximated two times in a single step and for the evaluation of 1F1 

function we are looping through enough number of terms for the CHF to 

converge, the time required to obtain a zero value can sometimes be 

large. For r = 2, a = -0.1, b = 0.1 the evaluator takes 10 seconds. Timings 

for the evaluator roughly ranged from several milliseconds to 10-20 

seconds. This time may vary from system to system for a range of test 

cases. 

 

7. USEFULNESS 

 

It is pertinent to remark here that my supervisor Prof. J.M.C. Joshi, the 

Ex- Dean faculty of science, D.S.B. Campus, Kumaun University 

Nainital published a research paper in a foreign journal or reviews [16] 

and shown that CHF function has been used in statistics, so evaluation of 

its zeros numerically may be more useful there. S.M. Joshi Transform 

and SMPJ formula [17] (so called by the author in dedication to his 

parents) has used confluent hyper geometric function in its kernel and 

formula respectively. The usefulness of the CHF function has also been 

indicated in the book [18]. 
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