
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 4; April -2016

 www.ijcrd.com Page 647

Search Optimization Using Smart Crawler
Dr. Mohammed Abdul Waheed1, Ajayraj Reddy2

1
Assosciate Professor, Department of Computer Science & Engineering,

2P.G.Student, Department of Computer Science & Engineering,

VTU PG Centre, Kalaburgi, Karnataka, India.

Abstract— As deep net grows at a really quick pace, there has

been multiplied interest in techniques that facilitate efficiently

find deep-web interfaces. However, because of the massive

volume of net resources and also the dynamic nature of deep net,

achieving wide coverage and high efficiency may be a difficult

issue. We tend to propose a two-stage framework, specifically

Advance Crawler (ACrawler), for efficient gathering deep net

interfaces. Within the first stage, ACrawler performs site-based

sorting out centre pages with the assistance of search engines,

avoiding visiting an oversized variety of pages. To realize

additional correct results for a targeted crawl, ACrawler ranks

websites to order extremely relevant ones for a given topic.

Within the second stage, ACrawler achieves quick in-site looking

by excavating most relevant links with associate degree

accommodative link-ranking.

Keywords— peer-to-peer, store-carry-forward, discover-predict-

deliver, interaction, recommendation.

I. INTRODUCTION

A Web Crawler (also known as a robot or a spider) is a system

for the bulk downloading of web pages. Web crawlers are

used for a variety of purposes. Most prominently, they are one

of the main components of web search engines, systems that

assemble a corpus of web pages, index them, and allow users

to issue queries against the index and find the web pages that

match the queries. A related use is web archiving (a service

provided by e.g., the Internet archive [3]), where large sets of

web pages are periodically collected and archived for posterity.

A third use is web data mining, where web pages are analyzed

for statistical properties, or where data analytics is performed

on them (an example would be Attributor [5], a company that

monitors the web for copyright and trademark infringements).

Finally, web monitoring services allow their clients to submit

standing queries, or triggers, and they continuously crawl the

web and notify clients of pages that match those queries. The

deep (or hidden) web refers to the contents lie behind

searchable web interfaces that cannot be indexed by searching

engines. Based on extrapolations from a study done at

University of California, Berkeley, it is estimated that the

deep web contains approximately 91,850 terabytes and the

surface web is only about 167 terabytes in 2003 [1]. More

recent studies estimated that 1.9 zettabytes were reached and

0.3 zettabytes were consumed worldwide in 2007 [2], [3]. An

IDC report estimates that the total of all digital data created,

replicated, and consumed will reach 6 zettabytes in 2014 [4].

A significant portion of this huge amount of data is estimated

to be stored as structured or relational data in web databases

— deep web makes 96% of all the content on the Internet,

which is 500-550 times larger than the surface web [4], [3].

These data contain a vast amount of valuable information and

entities such as Infomine [5], Clusty [3], Books In Print [4]

may be interested in building an index of the deep web

sources in a given domain (such as book). Because these

entities cannot access the proprietary web indices of search

engines (e.g., Google and Baidu).

II. OBJECTIVES

1) The Objective is to record learned patterns of deep

web sites and form paths for incremental crawling.

2) Ranks site URLs to prioritize potential deep sites of a

given topic. To this end, two features, site similarity

and site frequency, are considered for ranking.

3) Focused crawler consisting of two stages: efficient

site locating and balanced in-site exploring.

SmartCrawler performs site-based locating by

reversely searching the known deep web sites for

center pages, which can effectively find many data

sources for sparse domains.

4) SmartCrawler has an adaptive learning strategy that

updates and leverages information collected

successfully during crawling.

III. WEB CRAWLER

A web crawler (also known as a robot or a spider) is a system,

a program that traverses the web for the purpose of bulk

downloading of web pages in an automated manner. Web

crawlers are prominently one of the main components of web

search engines that assemble a corpus of web pages or creates

a copy of all the visited pages, index them, and allow users to

issue queries against the index, provide fast searches and find

the web pages that match the queries. Interacting with

hundreds of thousands of web servers and name servers,

crawling is considered as the most fragile application since it

is beyond the control of the system. Crawler follows very

simple steps yet very effective work in maintenance, checking

of the downloaded links and also the validation of HTML

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 4; April -2016

 www.ijcrd.com Page 648

codes as follows It starts with the list of URL‗s to visit, called

seeds and downloads the web page.

IV. PROBLEM DEFINITION

An effective deep web harvesting framework, namely

SmartCrawler, is for achieving both wide coverage and high

efficiency for a focused crawler. Based on the observation that

deep websites usually contain a few searchable forms and

most of them are within a depth of three. Our crawler is

divided into two stages: site locating and in-site exploring.

The site locating stage helps achieve wide coverage of sites

for a focused crawler, and the in-site exploring stage can

efficiently perform searches for web forms within a site.

V. RELATED WORK

Existing strategies were dealing with creation of a single

profile per user, but conflict occurs when user‘s interest varies

for the same query Eg. When a user is interested in banking

exams in query ―bank‖ may be slightly interested in accounts

of money bank where not at all interested in blood bank. At

such time conflict occurs so we are dealing with negative

preferences to obtain the fine grain between the interested

results and not interested. Consider following two aspects:

1) Document-Based method:

These methods aim at capturing users’s clicking and browsing

behavior. It deals with click through data from the user i.e.

the documents user has clicked on. Click through data in

search engines can be thought of as triplets (q, r, c)

Where,

q = query

r = ranking

c = set of links clicked by user.

2) Concept-based methods:

These methods aim at capturing user’s conceptual needs.

User’s browsed documents and search histories. User profiles

are used to represent user’s interests and to infer their

intentions for new queries.

Disadvantages of Existing System:

1) Deep-web interfaces.

2) Achieving wide coverage and high efficiency is a

challenging issue.

VI. PROPOSED SYSTEM MECHANISM
To efficiently and effectively discover deep web data sources,

SmartCrawler is designed with two stage architecture, site

locating and in-site exploring, as shown in Figure 1. The first

site locating stage finds the most relevant site for a given topic,

and then the second in-site exploring stage uncovers

searchable forms from the site. Specifically, the site locating

stage starts with a seedset of sites in a site database. Seeds

sites are candidate sites given for SmartCrawler to start

crawling, which begins by following URLs from chosen seed

sites to explore other pages and other domains. When the

number of unvisited URLs in the database is less than a

threshold during the crawling process, SmartCrawler

performs ‖reverse searching‖ of known deep websites for

center pages (highly ranked pages that have many links to

other domains) and feeds these pages back to the site database.

Site Frontier fetches homepage URLs from the site database,

we going to rank the relevant information.

VII. SYSTEM ARCHITECTURE: (TWO STAGE

ARCHITECTURE)

Fig.1 System Architecture: (Two stage Architecture)

To efficiently and effectively discover deep web data sources,

SmartCrawler is designed with two stage architecture, site

locating and in-site exploring, as shown in Figure. The first

site locating stage finds the most relevant site for a given

topic, and then the second in-site exploring stage uncovers

searchable forms from the site. Specifically, the site locating

stage starts with a seed set of sites in a site database. Seeds

sites are candidate sites given for SmartCrawler to start

crawling, which begins by following URLs from chosen seed

sites to explore other pages and other domains. When the

number of unvisited URLs in the database is less than a

threshold during the crawling process, SmartCrawler performs

‖reverse searching‖ of known deep websites for center pages

(highly ranked pages that have many links to other domains)

and feeds these pages back to the site database.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 4; April -2016

 www.ijcrd.com Page 649

IV. IMPLEMENTATION

A. ALGORITHMS & TECHNIQUES USED
Algorithm 1: Reverse searching for more sites.

Input: seed sites and harvested deep websites

Output: relevant sites

1 while # of candidate sites less than a threshold do

2 // pick a deep website

3 site = getDeepWebSite(siteDatabase, seedSites)

4 resultP age = reverseSearch(site)

5 links = extractLinks(resultP age)

6 foreachlink in links do

7 page = downloadPage(link)

8 relevant = classify(page)

9 if relevant then

10 relevantSites=extractUnvisitedSite(page)

11 Output relevantSites

12 end

13 end

14 end

Algorithm 2: Incremental Site Prioritizing.

Input :siteFrontier

Output: searchable forms and out-of-site links

1 HQueue=SiteFrontier.CreateQueue(HighPriority)

2 LQueue=SiteFrontier.CreateQueue(LowPriority)

3 while siteFrontier is not empty do

4 if HQueue is empty then

5 HQueue.addAll(LQueue)

6 LQueue.clear()

7 end

8 site = HQueue.poll()

9 relevant = classifySite(site)

10 if relevant then

11 performInSiteExploring(site)

12 Output forms and OutOfSiteLinks

13 siteRanker.rank(OutOfSiteLinks)

14 if forms is not empty then

15 HQueue.add (OutOfSiteLinks)

16 end

17 else

18 LQueue.add(OutOfSiteLinks)

19 end

20 end

21 end

B. MODULE INFORMATION
1. Two-stage crawler

It is challenging to locate the deep web databases, because

they are not registered with any search engines, are usually

sparsely distributed, and keep constantly changing. To address

this problem, previous work has proposed two types of

crawlers, generic crawlers and focused crawlers. Generic

crawlers fetch all searchable forms and cannot focus on a

specific topic. Focused crawlers such as Form-Focused

Crawler (FFC) and Adaptive Crawler for Hidden-web Entries

(ACHE) can automatically search online databases on a

specific topic. FFC is designed with link, page, and form

classifiers for focused crawling of web forms, and is extended

by ACHE with additional components for form filtering and

adaptive link learner. The link classifiers in these crawlers

play a pivotal role in achieving higher crawling efficiency

than the best-first crawler However, these link classifiers are

used to predict the distance to the page containing searchable

forms, which is difficult to estimate, especially for the delayed

benefit links (links eventually lead to pages with forms). As a

result, the crawler can be inefficiently led to pages without

targeted forms.

2. Site Ranker

When combined with above stop-early policy. We solve this

problem by prioritizing highly relevant links with link

ranking. However, link ranking may introduce bias for highly

relevant links in certain directories. Our solution is to

build a link tree for a balanced link prioritizing. Figure 2

illustrates an example of a link tree constructed from the

homepage of http://www.abebooks.com. Internal nodes of the

tree represent directory paths. In this example, servlet

directory is for dynamic request; books directory is for

displaying different catalogs of books; Amdocs directory is

for showing help information. Generally each directory

usually represents one type of files on web servers and it is

advantageous to visit links in different directories. For links

that only differ in the query string part, we consider them as

the same URL. Because links are often distributed unevenly in

server directories, prioritizing links by the relevance can

potentially bias toward some directories. For instance, the

links under books might be assigned a high priority,

because ―book‖ is an important feature word in the URL.

Together with the fact that most links appear in the books

directory, it is quite possible that links in other directories will

not be chosen due to low relevance score. As a result, the

crawler may miss searchable forms in those directories.

3. Adaptive learning

Adaptive learning algorithm that performs online feature

selection and uses these features to automatically construct

link rankers. In the site locating stage, high relevant sites are

prioritized and the crawling is focused on atopic using the

contents of the root page of sites, achieving more accurate

results. During the in site exploring stage, relevant links are

prioritized for fast in-site searching. We have performed an

extensive performance evaluation of Smart Crawler over real

web data in 1representativedomains and compared with

ACHE and site-based crawler. Our evaluation shows that our

crawling framework is very effective, achieving substantially

higher harvest rates than the state-of-the-art ACHE crawler.

The results also show the effectiveness of the reverse

searching and adaptive learning.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 4; April -2016

 www.ijcrd.com Page 650

V. CONCLUSIONS

We've shown that our approach achieves each wide coverage

for deep net interfaces and maintains extremely efficient

locomotion. Crawdy may be a targeted crawler consisting of 2

stages: efficient web site locating and balanced in-site

exploring. Crawdy performs site-based locating by reversely

looking the glorious deep websites for center pages, which

may effectively find several knowledge sources for distributed

domains. By ranking collected sites and by focusing the

locomotion on a subject, Crawdy achieves additional correct

results. The in-site exploring stage uses adaptive link-ranking

to go looking at intervals a site; and that we style a link tree

for eliminating bias toward sure directories of an internet site

for wider coverage of web directories. Our experimental

results on a representative set of domains show the

effectiveness of the projected two-stage crawler that achieves

higher harvest rates than different crawlers. In future work, we

tend to arrange to mix pre-query and postquery approaches for

classifying deep-web forms to more improve the accuracy of

the shape classifier.

REFERENCES

[1] Peter Lyman and Hal R. Varian. How much information? 2003.
Technical report, UC Berkeley, 2003.

[2] Roger E. Bohn and James E. Short. How much information? 2009

report on american consumers. Technical report, University of
California, San Diego, 2009.

[3] Martin Hilbert. How much information is there in the” information

society”? Significance, 9(4):8–12, 2012.
[4] Idc worldwide predictions 2014: Battles for dominance – and

survival–on the 3rd platform. http://www.idc.com/ research /

Predictions14 / index.jsp, 2014.
[5] Michael K. Bergman. White paper: The deep web: Surfacing

hidden value. Journal of electronic publishing, 7(1), 2001.

[6] Yeye He, Dong Xin, Venkatesh Ganti, Sriram Rajaraman, and
Nirav Shah. Crawling deep web entity pages. In Proceedings of the

sixth ACM international conference on Web search and data

mining, pages 355–364. ACM, 2013.
[7] Infomine. UC Riverside library. http://lib-www.ucr.edu/, 2014.

[8] Clusty’s searchable database dirctory. http://www.clusty. com/,

2009.
[9] Booksinprint. Books in print and global books in print access.

http://booksinprint.com/, 2015.

[10] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward large
scale integration: Building a metaquerier over databases on the

web. In CIDR, pages 44–55, 2005.

[11] Denis Shestakov. Databases on the web: national web domain
survey. In Proceedings of the 15th Symposium on International

Database Engineering & Applications, pages 179–184. ACM,

2011.
[12] Denis Shestakov and Tapio Salakoski. Host-ip clustering

technique for deep web characterization. In Proceedings of the

12th International Asia-Pacific Web Conference (APWEB), pages
378–380. IEEE, 2010.

[13] Denis Shestakov and Tapio Salakoski. On estimating the scale of
national deep web. In Database and Expert Systems Applications,

pages 780–789. Springer, 2007.

[14] Shestakov Denis. On building a search interface discovery system.
In Proceedings of the 2nd international conference on Resource

discovery, pages 81–93, Lyon France, 2010. Springer.

[15] Luciano Barbosa and Juliana Freire. Searching for hidden-web
databases. In WebDB, pages 1–6, 2005.

[16] Luciano Barbosa and Juliana Freire. An adaptive crawler for

locating hidden-web entry points. In Proceedings of the 16th
international conference on World Wide Web, pages 441–450.

ACM, 2007.

[17] Soumen Chakrabarti, Martin Van den Berg, and Byron Dom.
Focused crawling: a new approach to topic-specific web resource

discovery. Computer Networks, 31(11):1623–1640, 1999.
[18] Jayant Madhavan, David Ko, Łucja Kot, Vignesh Ganapathy, Alex

Rasmussen, and Alon Halevy. Google’s deep web crawl.

Proceedings of the VLDB Endowment, 1(2):1241–1252, 2008.
[19] Olston Christopher and Najork Marc. Web crawling. Foundations

and Trends in Information Retrieval, 4(3):175–246, 2010.

[20] Balakrishnan Raju and Kambhampati Subbarao. Sourcerank:
Relevance and trust assessment for deep web sources based on

inter-source agreement. In Proceedings of the 20th international

conference on World Wide Web, pages 227–236, 2011.
[21] Balakrishnan Raju, Kambhampati Subbarao, and Jha

Manishkumar. Assessing relevance and trust of the deep web

sources and results based on inter-source agreement. ACM
Transactions on the Web, 7(2):Article 11, 1–32, 2013.

[22] Mustafa Emmre Dincturk, Guy vincent Jourdan, Gregor V.

Bochmann, and Iosif Viorel Onut. A model-based approach for
crawling rich internet applications. ACM Transactions on the Web,

8(3):Article 19, 1–39, 2014.

[23] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel,
and Zhen Zhang. Structured databases on the web: Observations

and implications. ACM SIGMOD Record, 33(3):61–70, 2004.

[24] Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi Meng. An
interactive clustering-based approach to integrating source query

interfaces on the deep web. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data, pages
95–106. ACM, 2004.

[25] Eduard C. Dragut, Thomas Kabisch, Clement Yu, and Ulf Leser.

A hierarchical approach to model web query interfaces for web
source integration. Proc. VLDB Endow., 2(1):325–336 August

2009.

[26] Thomas Kabisch, Eduard C. Dragut, Clement Yu, and Ulf Leser.
Deep web integration with visqi. Proceedings of the VLDB

Endowment, 3(1-2):1613–1616, 2010.

[27] Eduard C. Dragut, Weiyi Meng, and Clement Yu. Deep Web
Query Interface Understanding and Integration. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers, 2012.

[28] Andr´e Bergholz and Boris Childlovskii. Crawling for
domainspecific hidden web resources. In Web Information

Systems Engineering, 2003. WISE 2003. Proceedings of the

Fourth International Conference on, pages 125–133. IEEE, 2003.
[29] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden

web. In Proceedings of the 27th International Conference on Very

Large Data Bases, pages 129–138, 2000.
[30] Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin. Optimal

algorithms for crawling a hidden database in the web. Proceedings

of the VLDB Endowment, 5(11):1112–1123, 2012.
[31] Panagiotis G Ipeirotis and Luis Gravano. Distributed search over

the hidden web: Hierarchical database sampling and selection. In

Proceedings of the 28th international conference on Very Large

Data Bases, pages 394–405. VLDB Endowment, 2002.

[32] Nilesh Dalvi, Ravi Kumar, Ashwin Machanavajjhala, and Vibhor
Rastogi. Sampling hidden objects using nearest-neighbor oracles.

In Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1325–
1333. ACM, 2011.

[33] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin Dong,

David Ko, Cong Yu, and Alon Halevy. Web-scale data integration:
You can only afford to pay as you go. In Proceedings of CIDR,

pages 342–350, 2007.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 4; April -2016

 www.ijcrd.com Page 651

[34] Brightplanet’s searchable database dirctory. http://www.
completeplanet.com/, 2001.

[35] Mohamamdreza Khelghati, Djoerd Hiemstra, and Maurice Van

Keulen. Deep web entity monitoring. In Proceedings of the 22nd
international conference on World Wide Web companion, pages

377–382. International World Wide Web Conferences Steering

Committee, 2013.
[36] Soumen Chakrabarti, Kunal Punera, and Mallela Subramanyam.

Accelerated focused crawling through online relevance feedback.
In Proceedings of the 11th international conference on World

Wide Web, pages 148–159, 2002.

[37] Luciano Barbosa and Juliana Freire. Combining classifiers to
identify online databases. In Proceedings of the 16th international

conference on World Wide Web, pages 431–440. ACM, 2007.

[38] Jared Cope, Nick Craswell, and David Hawking. Automated
discovery of search interfaces on the web. In Proceedings of the

14th Australasian database conference-Volume 17, pages 181–189.

Australian Computer Society, Inc., 2003.
[39] Dumais Susan and Chen Hao. Hierarchical classification of Web

content. In Proceedings of the 23rd Annual International ACM

SIGIR conference on Research and Development in Information
Retrieval, pages 256–263, Athens Greece, 2000.

[40] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H. Witten. The weka data mining
software: an update. SIGKDD Explorations Newsletter, 11(1):10–

18, November 2009.

[41] Open directory project. http://www.dmoz.org/, 2013.
[42] The UIUC web integration repository. http://metaquerier.cs.

uiuc.edu/repository/, 2003.

