

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016: pp 689-693

A Implementation and Analysis of WSN on TinyOS

Vishal Nagar Asmita Dixit
 PSIT Kanpur PSIT Kanpur

Abstract— In the current scenario of research the Wireless
Sensor Networks have been a core field of research. In the area
of wireless sensor networks through its different scopes, data
collection has been a vital scope of research. For the routing of
data packets from the origin to the destination there are
several wireless sensor networks which most of the times
depend on certain collection driven service. Chosen through
several protocols collection tree protocol is a significant one
although there are different protocols that have been designed
for data collection in wireless sensor networks. For this a
specific operating system has been devised named TinyOS.
Also keeping in mind the constraints of sensor networks in
consumption of power view point, the operating system gives a
distinguished platform for the development of several
implementations in WSNs in collaboration of limitations of the
sensor equipments. Due to sometimes placing of sensor
networks in isolated locations, the testing of implementation in
such scenarios becomes inconvenient. Henceforth to assist the
progress of the complete testing of the protocol a network
simulation can be performed. The paper basically manages
with the approach based on TOSSIM (TinyOS Simulator)
approaching simulation of collection tree protocol in wireless
sensor networks and the determination of the performance of
the protocol in consideration with several aspects. TOSSIM or
TinyOS Simulator is a prominent simulator which can be
made use of in simulation of an entire TinyOS application. The
paper also brings forth an assessment that will depict a brief
look about the performance of collection tree protocol and
simultaneously will give awareness on how TOSSIM can be
worked with as a simulation platform for implementation of
collection tree protocol.

Index Terms—CTP (Collection Tree Protocol), Motes,
TinyOS Simulator (TOSSIM), Wireless Sensor Networks.

I. INTRODUCTION
For capturing the information of the real world scenario

through communication component motes, wireless sensor
networks can be a medium of collection of such
information. Decisions are taken by the administrator on the
basis of the data being gathered by motes and their specific
reactions to situations. Collection of Data has been a
significant field of task in a wireless sensor network.
Designing of environment collection tree protocol was done
for the gathering of Data. Collection Tree Protocol (CTP) is
free from address. Collection Tree Protocol is based on the

concept that the data link layer gives effective restricted
broadcast address, synchronous acknowledgements for

unicast packets, protocol dispatch area and a single hop
origin and target field. Assumption is made on the linking
quality of the nodes that are nearby. Various origins can
transmit data to a distinct sink with the usage of this
routing protocol.

For the forthcoming analysis of the data being gathered at
the destination it can be stored and recorded. Since CTP
examines the quality of link of the adjoining neighboring
nodes, it also works with the expectation about the
assumpted units of transposal a node will take to transmit a
unicast packet to the target.

For a unique platform for operation of CTP for the
gathering of data an event driven operating system is
designed uniquely for network embedded sensor motes in
addition to it a network embedded system C or nesC has
also been programmed [8]. The paper depicts a data
collection scheme with the use of Collection Tree Protocol
and hence on the basis of few performance reasons like
packet delivery ratio, an estimate is made in consideration
to the fluctuating levels of radio frequency (RF) and
frequency of channel. Based on the concept of Micaz motes
the protocol has been designed. TOSSIM (TinyOS
Simulator) has been used for the complete simulation.
TOSSIM a distinct event based simulator assembles a
TinyOS application into TOSSIM framework that implies
testing, finding errors and determining algorithms in a
restricted and repetitive environment. Furthermore a
complete network along with its implementations can be
simulated with the use of TOSSIM. It most of the time
simulates the working of Micaz motes.

II. RELATED WORKS
Within the last two decades the wireless sensor networks

research community has developed a wide variety of
algorithms for efficient and reliable source to sink
collection of data related to sensed phenomenon. These
include several power-aware medium access protocols and
reliable routing schemes [2]. In any case the Collection Tree
Protocol provides a best effort any cast datagram

interaction with one of the collection roots in a network [3].
Collection Tree Protocol or CTP is widely regarded as a
reference protocol for performing data collection in wireless
sensor networks and its specification is provided in TinyOS
Enhancement Proposal 123 [5]. Gnawali et al. also report a
throughout description and performance evaluation of CTP
in realistic settings, demonstrating the ability of the protocol
to reliably and efficiently report data to a central collector
[5, 6]. Several works has also been done mainly in testing
the CTP using Telosb motes as well as simulating it using
network simulator. Several simulators have been developed
for simulation of networks [1], for example SimOS [4] used
binary rewriting techniques to provide enough detail and yet
enough speed and flexibility to allow workload-driven
evaluation of machine architectures and operating systems
for multiprocessors by running whole programs. Ns-2 [4],
using an object approach, provided a common toolbox for
studying a wide range of network protocols and
implementations against various traffic models. Proteus [6]
provided broad feedback on the design of parallel programs.
TOSSIM, a simulator mainly meant for simulating TinyOS
applications simulates an entire application and thus
captures the network interactions as well [9].

III. TOSSIM
TOSSIM or TinyOS Simulator, primarily a discrete

event based simulator provides platform to depict errors,
evaluate and analyse algorithms in a restrained and
repeatable scenario. It provides complete scalability, fidelity
and bridges the gap between algorithms and applications.
Using it at a very fine grain it can capture the nature of a
mote. Large amount of simulation of motes can be
performed at once. Limited to its scope As TinyOS provides
a very event driven implementation, this accomplishment
scheme most of the times goes well with the discrete event
simulation given by TOSSIM [9]. In Sensor networks
evaluation of an individual mote is inadequate because it
generally follow an event driven nature. In order to capture
a large range of communications, programs must be tested
at scale, in complex and rich environments. Since
development of sensor network needs large amount of
motes leading to a difficult task as a result much of the time
is spend in maintenance rather than development. Hence the
complete process is bit time consuming and if anyway a
mote of a remote location fails, situation handling of failure
and redeployment becomes more time consuming for the
complete network. In the scenario of evaluation such type
of overhead are not taken into account. For all these
difficulties simulator is a solution because it can tackle them
by giving restricted, repeatable environments, by having
tools like debuggers and delaying deployment till the code
is better tested and algorithms better understood.

IV. SYSTEM MODEL
Typically in a sensor network, the information that is

collected by multiple sensors needs to be transmitted to a
remote central processor that is called a sink node or simply
sink. If the sink node is far away, the data of the sensed
phenomenon recorded by the sensor node may first be
transmitted to a relay node, and then multihop routing is
used to forward the data to its final destination. There are
multiple nodes that want to transmit their collected

information to the sink node. The corresponding scenario is
illustrated in figure 1. If there are N sensor nodes in the
network and without loss of generality if the sink node is
denoted as the Nth node then the other N-1 nodes either
have their own data to send to node N, or they just act as
relay nodes to help others. The topology that has been
followed is strictly a tree topology taking a total of ten
nodes and one node acting as the sink node. The routing
gradient used is called expected transmission value or
Expected Transmission Count (ETX) [5]. One hop ETX is
determined by calculating the number of transmissions it
takes for a node to send a unicast packet to its neighbor
whose acknowledgement is successfully received. ETX
(root) = 0. The equation for determining the ETX is given
as ETX (node) = ETX (parent) + ETX (link to parent)

The arrangement of nodes has been shown in fig.1.The
nodes follow a tree topology.

CTP chooses the route with the lowest ETX value. Link
estimation in CTP design is used for determining the
communication link quality between the neighbors. The
bidirectional link estimate value ETX is computed by using
both routing beacons and unicast data packets. The routing
packets are sent periodically to calculate the bidirectional
link quality between the neighbors. This value fills the link
estimator neighbor table. The CTP make use of the data
transmissions as well to calculate the outbound link quality
which is then combined with the control packets link
estimate. In a stable network data packets are used to keep
track of any link quality changes and therefore the number
of control packets is reduced. After the transmission of n
number of data packets new outbound quality estimate is
performed [3], where n is implementation dependent. The
outbound quality estimate value is the ratio of number of
data packets transmitted to the number of
acknowledgements received. The MAC layer gives the
acknowledgement information to the forwarding engine.
The forwarding engine removes the data packet from its
send cache and informs the link estimator engine about the
acknowledgement.

S

2 3

 4 5 6 7

8 9 10

Fig.. 1. Arrangement of nodes

V. CTP IMPLEMENTATION

CTP uses a set of beacon messages for construction of
the tree topology and data messages to report to sink. In

particular, application-level modules can call a generic
collection service which is in turn implemented through
CTP [5, 6]. The standard implementation of CTP consists of
three main logical software components, the Routing
Engine (RE), the Forwarding Engine (FE), and the Link
Estimator (LE).

A. Routing Engine
The Routing Engine, is a detail that runs on every node

analyses well the sending and receiving beacons also
creates and updates routing table [4]. There is a list of
neighbors held in this table so that node can choose its
parent in the routing tree. In the table the information
gathered from the beacons is filled. Further information is
held by the routing table in account with the identifier of
neighboring nodes for example indication of the quality of a
node as a potential parent. In the case of CTP, this metric is
the ETX (Expected Transmissions) which is communicated
by a node to its neighbors through beacons exchange. A
node having an ETX equal to n is expected to deliver a data
packet to the sink with a total of n transmissions. The ETX
of a node is defined as the “ETX of its parent plus the ETX
of its link to its parent” [5]. More precisely, a node first
computes, for each of its neighbors, the link quality of the
current node-neighbor link. This metric, which is referred to
as the 1-hop ETX, or ETX1hop, is computed by the LE. For
each of its neighbors the node then sums up the 1-hop ETX
with the ETX the corresponding neighbors had declared in
their routing beacons. The result of this sum is the metric
which has been called the multi-hop ETX, or ETXmhop [6,
7].

B. Forwarding Engine
The forwarding data for which the forwarding engine

takes care for may be originated from either the application
layer of the similar node or from the neighboring nodes.
Suppression of duplicate packets as well as detection and
repairing of routing loops is one of the responsibilities of
forwarding engine. Also these two responsibilities are one
of the main characteristics of TinyOS[6]. Whereas that
meant for the estimation of 1-hop link quality is dealt by
Link Estimator in CTP.

C. Link Estimator
The Link Estimator takes care of determining the

inbound and outbound quality of 1-hop communication link
[5, 10]. As mentioned before, reference to the metric that
expresses the quality of such links as the 1-hop ETX has
been drawn. The LE computes the 1-hop ETX by collecting
statistics over the number of beacons received and the
number of successfully transmitted data packets. From these
statistics, the LE computes the inbound metric as the
expected number of transmission attempts required by the
neighbor to successfully deliver a beacon. To gather the
necessary statistics and compute the 1-hop ETX, the LE
adds a 2 byte header and a variable length footer to
outgoing routing beacons.

VI. PERFORMANCE METRICS

To evaluate a particular protocol we always need a set of
performance metrics. The performance metrics should be
such that they give an outline of the protocol. For evaluating
Collection Tree Protocol the following performance metrics
has been taken.

A. Packet Delivery Ratio
Packet delivery ratio is the ratio of the total number of

packets delivered to the total number of packets sent by the
senders. Packet delivery ratio also takes into account the
number of data values the network can send to the sink. If
the packet delivery ratio equals to 1 then it can be said that
all the packets has been delivered successfully by the
network. In the worst case, none of the collected data values
reaches the sink. This may happen if the sink is
disconnected from the network and causes the packet
delivery ratio to be zero. Packet delivery ratio being a very
important performance measurement metrics, it has been
calculated under varying channel frequency and variable
radio frequency power as well.

B. Throughput
Throughput refers to the total number of packets

delivered to the sink node. This is done by checking the
counter value at the sink. If a packet arrives at the sink
node, then the counter increments by 1 and thus the value is
printed in the screen along with the node id. The counter
value is depicted in hexadecimal format. With each node id
one counter value is associated. Figure 3 gives a rough idea
about the packet count for four nodes.

Apart from packet delivery ratio and throughput, to
evaluate the performance, the packet delivery ratio has been
checked under variable radio frequency (RF) power and
variable channel frequency. This has been done to estimate
the reason for packet loss.

VII. SIMULATION
The TinyOS stack uses three network sampling rates at

different phases of packet reception and transmission:
40Kbps for data, 20Kbps for receiving a start symbol, and
10Kbps for sending a start symbol [7, 8]. In TOSSIM,
adjustments to radio bit-rates are made by changing the
period between radio clock events. The combination of bit
sampling and bit-rate changes nearly captures the entire
stack. There is one exception: the pair of spin loops to
synchronize a sender signal, the one place where TinyOS
breaks its event-driven methodology.

Under simulation, the event-driven concept is maintained
by ignoring the first spin loop (for the zero) and handling
the second (for the one) with additional state. Whenever a
mote transmits the synchronization bit, it checks if any of
the motes that can hear it are in the synchronization
listening state. If it finds such a mote, it enquires a radio
event for the receiver which represents the occurrence of the
input capture. This implementation results in an almost
perfect simulation of the TinyOS networking stack at a bit
level. TOSSIM accurately simulates the hidden node
problem and can simulate errors at all phases of packet
reception. When two nodes have interfering transmissions, a
third listening node will just see the union of the two

sender’s bits, leading to both signals being corrupted.
Additionally, delay arises when motes repeatedly enter
CSMA wait because they continue to hear a signal on the
channel.

In this simulation ten nodes has been taken, with one
node being the sink node where all the packets are being
collected from the source nodes. Nodes nearer to the sink
acts as relay nodes.

The Easy Collection module present in /opt/tinyos-
2.1.0/apps/CTP1/EasycollectionC.nc has been run at the
forwarding nodes as well as at the sink node and other
nodes. The simulation output shown in figure 2 reflects the
programs being successfully installed and compiled in the
motes. After the successful compilation, the python file is
run which provides the printed output of the nodes booting
up and connecting with the sink node that is node1.

After the initial connection set up, the Easy collection
module is again run by considering the sink node. Thus the
simulation results in fig.3 show the node id and the counter
value which reflects the number of packets received at the
sink.

has been evaluated by varying the radio frequency power
and the channel frequency.

A. Packet Delivery Ratio
To analyze the ability of CTP to send packets from

source to the sink either directly or through forwarding
nodes, about 10 nodes has been taken with one node acting
as the sink node and the others are acting as source node or
the forwarding nodes. The graphical analysis takes into
account the packet delivery ratio in y- axis and the nodeid in
x-axis. The first counter value at the sending node and the
last counter value at the receiving node are taken and the
difference gives the packets received. Thus a ratio between
the packets sent and packets received is calculated which
gives the packet delivery ratio and is plotted in the y-axis.
After plotting the values obtained from simulation, the
graphical representation has been shown in fig. 4.

From fig. 4, it is seen that the packet delivery ratio
significantly decreases as we go down the tree, that means
for the nodes which are nearer to the sink, the number of
packets received are more as compared to the nodes which
are further away from the sink.

The packet delivery ratio is much lesser for the leaf
nodes. Observation is made by evaluating the packet
delivery ratio by changing the radio power at the nodes, and
channel frequency as well. The main reason behind
changing the radio power and channel frequency is to get an
idea about the reason for the packet loss.. Fig. 5 shows the
graphical representation of the packet delivery ratio with
respect to changing radio power levels for 7 nodes.

Fig. 2. Simulation output showing the connection initiation.

Fig. 3. Simulation output at sink node for up to four nodes.

VIII. PERFORMANCE ANALYSIS
The analysis has been carried out based on the

experimental results to the metrics introduced in section VI,
i.e., the packet delivery ratio, and throughput. The packet
delivery ratio being an important performance incentive, it

Fig. 4. Packet Delivery ratio

Fig. 5. Packet delivery ratio on changing the RF Power

Thus by changing the channel frequency and radio
frequency (RF) power, it is seen that the packet delivery
ratio significantly increases as the RF power increases. The
changes in radio power and channel frequency have been
made in the configuration file for running TinyOS
applications in TOSSIM.

B. Throughput
Throughput calculates the number of packets received at

the sink node. It is evaluated by checking the counter value
at the sink node. The simulation output shows the counter
value. The counter is incremented automatically on
reception of a packet at the sink node. The output shows the
counter value associated with each node id. The counter
value is generated in hexadecimal. The hexadecimal value
is then converted to decimal and the resulting decimal value
is taken as the count for the actual number of packets
received at the sink node. Fig. 6 shows the graphical
representation of the number of packets received over a
period of 5 seconds.

Thus from fig. 6 it is evident that the throughput is
maximum for the nodes which are located near the sink.
The throughput decreases as the distance of the nodes from
the sink increases.

Fig. 6. Throughput

IX. CONCLUSION
Hence a detailing is provided in the paper regarding the

application of Collection Tree Protocol in wireless sensor
networks using a simulator TOSSIM (TinyOS Simulator).
The basic focus area of paper is done on the application part
in contrary to other researchers who present an accessible
reference for those who feel an interest in CTP and attempt
its re-implementation in some other platforms. The
effectiveness of the application has been evaluated through
a considerable simulation study, which also validates
persuasive performance of CTP in context of packet
delivery ratio and throughput. As we go down the level in
the tree the throughput and packet delivery ratio degrades,
the application and the results of simulation also depict this.
Distance is also contributing its role as the nodes which are

a bit farther from the destination have less amount of packet
delivery ratio. Although the packet delivery ratio can be
gradually increased by altering the radio power and channel
frequency. Hence the ratio can be increased if there is an
increment being done in the radio frequency power in
combination with the channel frequency. Also a loss of
packets is suffered because of low radio frequency power
and channel frequency. Since at the current scenario
TOSSIM works only for Micaz series of motes but later
works can be implemented for simulating the behavior of a
sensor network for Crossbow Telosb series of motes.

REFERENCES
[1] Athanassios Boulis et al. Castalia: “A Simulator for Wireless Sensor

Networks.” Available at URL :http://castalia.npc.nicta.com.au/.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

“Wireless Sensor Networks: A Survey.” Computer Networks,
38(4):393–422, March 2012.

[3] Ioannis and Kinalis, Athanasios and Nikoletseas, Sotiris
Chatzigiannakis, "Sink Mobility Protocols for Data Collection in
Wireless Sensor Networks", Proceedings of the 4

th
 ACM

International workshop on Mobility management and wireless access
2014.

[4] J. E. Egea-López, A. Vales-Alonso, P. S. Martínez-Sala, J. Pavón-
Mariïo, and García-Haro. “Simulation Tools for Wireless Sensor
Networks,” In International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS 2015),
Philadelphia, PA, USA, July 2015.

[5] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis “Collection Tree Protocol,” In Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2012), Berkeley, CA, USA, November 2012.

[6] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, and Philip
Levis. “CTP: Robustand Efficient Collection through Control and
Data Plane Integration”. Technical report,The Stanford Information
Networks Available at URLhttp://sing.stanford.edu/pubs/sing-08-
02.pdf.

[7] Pascal von Rickenbach, Nicolas Burri, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN 2013), Cambridge, MA, USA,
April 2013.

[8] Philip Levis and David Gay “TinyOS Programming”, Cambridge
University Press, 2012.

[9] Philip Levis, Nelson Lee, Matt Welsh, and David Culler "TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS Applications." In
Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2013).

[10] S.D. Muruganathan, D.C.F. Ma, R.I. Bhasin, and A.Fapojuwo, “A
centralized energy-efficient routing protocol for wireless sensor
networks”, IEEE Radio Communications Magazine, 2015, pp.S8-
S13.

 www.ijcrd.com Page :689-693

