
International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 5; May -2017 

 

                                                                                                   www.ijcrd.com Page 658 
 

A File Sharing System with Performance Progression 
Techniques using Hadoop 

Yash A. Bonde 
UG Student, Computer Department 

Jayawantrao Sawant College of Engineering 
Pune, India 

yashbone999@gmail.com 

Sumit S. Shitole 
UG Student, Computer Department 

Jayawantrao Sawant College of Engineering 
Pune, India 

sumitshitole1994@gmail.com 

Prof. Mohan Pawar 
Asst. Professor 

Jayawantrao Sawant College of Engineering 
Pune, India 

Mohanpawar2006@gmail.com 

Gunjan D. Deswal 
UG Student, Computer Department 

Jayawantrao Sawant College of Engineering 
Pune, India 

gunjansingh122@gmail.com 

Vrushali D. Khodade 
UG Student, Computer Department 

Jayawantrao Sawant College of Engineering 
Pune, India 

khodadevd@gmail.com 

Prof. Ravindra P. Bachate 
Asst. Professor 

Jayawantrao Sawant College of Engineering 
Pune, India 

bachateravi@gmail.com
 
 

Abstract— The usage of Hadoop has been increasing greatly 
in recent years. Hadoop adoption is widespread. Hadoop is 
mainly used by some big users such as Yahoo, Facebook, Netfix 
and Amazon for data analysis of unstructured data. As Hadoop 
can deal with both structured and unstructured data. Hadoop 
distributed file system (HDFS) is meant for storing large files but 
when large number of small files need to be stored, HDFS has to 
face few problems as all the files in HDFS are managed by a 
server. Hadoop, an open source java framework deals with big 
data. It has mainly two core components: HDFS (Hadoop 
distributed file system) which stores large amount of data in a 
reliable manner and another is MapReduce which is a 
programming model which processes the data in parallel and 
distributed manner. As large number of small files puts heavy 
load on NameNode of HDFS Hadoop does not perform well for 
those small files and MapReduce is encountered for increase in 
execution time. Hadoop is designed to handle huge size files and 
hence suffers a performance penalty while dealing with large 
number of small files. This research work gives an introduction 
about HDFS, small file problem and existing ways to deal with it 
these problems along with proposed approach to handle small 
files. In proposed approach, merging of small file is done using 
MapReduce programming model on Hadoop. This approach 
improves the performance of Hadoop in handling of small files 
by ignoring the files whose size is larger than the block size of 
Hadoop and also reduces the memory required by NameNode to 
store them. 

Keywords— HDFS, Hadoop, Map-Reduce, Small Files, 
Encryption 

I. INTRODUCTION  

As huge amount of data is generated daily it is very difficult to 
deal with such huge data. So to handle this huge amount of 
data Hadoop is being used. Hadoop being an open source and 
java programming framework it supports storage and 
processing of extremely large data sets. It is possible to 
execute applications on system with Hadoop using thousands 
of commodity hardware nodes and it also handles thousands of 
terabytes of data. Hadoop being distributed file system it 
facilitates rapid data transfer rates within nodes and continue 
to operate system even in case of failure of node. With this 
approach the catastrophic system failure and unwanted data 
loss is preserve in case of number of nodes become 
inoperative. Hadoop is constructed using numerous functional 
modules as it is a software framework. Hadoop uses kernel to 
provide libraries for framework essentials, and other modules 
used in Hadoop are Hadoop distributed file system (HDFS) 
which can store data across number of servers to obtain high 
bandwidth within the nodes. Hadoop MapReduce is used to 
provide the programming model which can tackle large data 
sets and mapping of that data and reducing to obtain the 
desired result. [1] 

 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 5; May -2017 

 

                                                                                                   www.ijcrd.com Page 659 
 

II. LITERATURE SURVEY 

HDFS have drawback with handling small files. It causes high 
consumption of NameNode and low efficiency of file reading. 
In this paper, SFS is used and also include merging approach. 
Here it cannot use the mapreduce features. Now we are 
increase performance of mapreduce for handling small 
files[3]. HDFS cannot work proper with storing and merging 
small files for this problem Hbase and Avro is used also it can 
store middle small files of different size. In future faster 
merging technique will be generated [4]. NameNode have its 
own RAM and it store metadata in it to get max Efficiency. 
HAR require for automatic scaling data. The following 
technique is used Hadoop Archive Plus (HAR+) using sha256 
as the key, which is addition to HAR. Hadoop Archive plus 
have drawback of Overhead and it is time consuming [5]. To  
Avoid higher memory usage, flooding network, requests 
overhead and centralized point of failure (single point of 
failure "SPOF") of the single Namenode, HDFSX is introduce 
by AmrM Sauber. In future, this technique implement in real 
environment [6]. User access task is defined for improve and 
even solve the small file problem.it use PLSA technique 
which shows the correlations among the access tasks, 
applications and access files. It work from file-level to task-
level. The proposed strategy effectively reduce the MDS 
workload and the request response delay [7]. In This avoid the 
weakness of hFS with help of new techniques like Fast File 
System and Log Structure File system with new update 
strategies (strategies—update-in-place and update-out-of-
place).It is better technique to solve problem of handling small 
files in HDFS[8]. 

III.  SYSTEM ARCHITECTURE 

In this system, we have implemented File Sharing Application. 
This application is responsible for handle all the task. File 
Sharing Application consist of 6 individual blocks which are 
responsible for handling various types of individual tasks. 
These blocks are i). File Upload, ii). File Download, iii). File 
Sharing iv). File Encryption, v). File Decryption, vi). File 
Merge utility. File uploading and downloading in HDFS is 
handle by File Upload and File Download modules 
respectively. File Merging utility is main utility which 
optimized the storage scheme of HDFS. As per proposed 
system [1], this utility merge the same extension files in large 
one merged file. This approach will reduce the burden on 

NameNode. Which ultimately improves the Hadoop 
performance. 
 
 User use the browser to upload and download the 
files.Browser is connected to hadoop cluster setup  via file 
sharing application.File sharing application can use  six main 
method for store and  merge the various types of small files. 

 
 
 

Fig. System Architecture 

IV.  RESULTS AND OBSERVATION 

The following graphs shows the improvement done in system. 
The following graph shows that CPU Utilization is reduced by 
79% using Proposed System. 

Fig. CPU Utilization of System 
 

The following graph shows the comparisons between the 
Execution Time of Proposed System and Existing system 
throughout various stages of execution. 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 5; May -2017 

 

                                                                                                   www.ijcrd.com Page 660 
 

Graph state that performance is increased by (reduced  
Fig. CPU Execution time 

 
 
execution time) 25%,53% during Map, Reduce phase 
respectively. Which will cause total 44% improvement in 
execution time i.e. Execution time is reduced by 44%. 
Overall throughput of system is also increased in proposed 
approach than the existing system. 
 

 
Fig. Throughput of System 

 

V. CONCLUSION &  FUTURE SCOPE 

 

Currently Hadoop Distributed File System (HDFS) facing 
problem with small files. Various methods have been 
proposed to deal with this problem. In terms of overhead as it 
involves slight overhead by combining 
multiple files into single split compare to other methods where 
sending each file to a map-reduce task will cause too 
much overhead. It also increases reading efficiency of small 
files to a great extent. HAR (Hadoop Archive) Files – HAR 
has been introduce to deal with small file issue. HAR is 
basically dependent on hadoop archive command. HAR has 
introduced a layer on top of HDFS, which provided interface 
for file accessing. A HAR file is designed by hadoop archive 
command runs a MapReduce job to pack the files being 
archived into a small number of HDFS files. Though it slow 
down the performance as compare to directly accessing file 
from HDFS. Each and every block has an index value 
therefore HAR create one more master index layer for lot of 
small file index values. So Namenode will hold master index 
value and in turn solves small file problem. 
In Future, as we did our background research into 
solutions to the small files problem, these following 
can be done to avoid produce small files (or perhaps 
files at all). In other words, if small files are create 
problem small files problem in Hadoop: 1.Change your 
“feeder” software so it doesn’t, change your upstream 
code to stop generating them2.Run an offline 
aggregation process which aggregates your small files 

and re-uploads the aggregated files ready for 
processing3.Add an additional Hadoop step to the start 
of your job flow which aggregates the small files 

 

ACKNOWLEDGEMENT  
We preconceived our commend in the vicinity to our project 
guide Prof. M. V. Pawar, Assistant Professor Computer 
Department for his precious helpfulness and navigation that he 
gave us throughout our Project. We specially thank our project 
coordinator Prof. A. V. Devare for boosting us and for 
arranging us all the lab readiness. We would also like to 
preconceive our appreciation and thanks to HOD Prof. H. A. 
Hingoliwala and Principal Dr. M. G. Jadhav and all our 
friends who have served us all through our hard work. 

 

REFERENCES 
[1] Sumit S. Shitole, Yash A. Bonde, Vrushali D. Khodade,Gunjan D. 

Deswal, Mohan V. Pawar, Ravindra P. Bachate, “Allusive Study of 
Performance Progression Techniques for Hadoop,” International 
Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2063-
2068, 2016 ISSN 2395-1621 

[2] Parth Gohil, B. Noble, and 1. S. Dhobi, “A Novel Approach to Improve 
the Performance of Hadoop in Handling of Small Files,” 978-1-4799-
608S-9/1S/$31.00©201S IEEE 

[3] Yonghua Huo, Zhihao Wang, XiaoXiao Zeng,Yang Yang, Wenjing Li, 
ZHONG Cheng,”SFS:a massive small file processing middleware in 
hadoop,”IEICE – The 18th Asia-Pacific Network Operations and 
Management Symposium (APNOMS) 2016 

[4] Shuo Zhang, Li Miao, Dafang Zhang, Yuli Wang,”A strategy to deal 
with mass small files in hdfs,” 978-1-4799-4955-7/14 $31.00 © 2014 
IEEE DOI 10.1109/IHMSC.2014.87 

[5] D. Dev; R. Patgiri. HAR+: Archive and metadata distribution! Why not 

         both?. IEEE International Conference on Computer Communication and 

Informatics (ICCCI). 2015. pp.1-6. 

[6] Passent M EIKafrawy, AmrM Sauber, Mohamed M Hafez,”HDFSX:Big 
Data Distributed File System with Small Files Support” 
9781509028634/16/$31.00 ©2016 IEEE 

[7] Tao Wang, Shihong Yao, Zhengquan Xu*, Lian Xiong, Xin Gu, Xiping 
Yang,”An effective strategy for improving small file problem in 
distributed file system”, 978-1-4673-6850-6/15 $31.00 © 2015 IEEE 

DOI 10.1109/ICISCE.2015.35 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 5; May -2017 

 

                                                                                                   www.ijcrd.com Page 661 
 

[8] Zhihui Zhang, Kanad Ghose, “hFS: A Hybrid File System Prototype 

for Improving Small File and Metadata Performance,” Proc. 

SIGOPS/EuroSys European Conference on Computer Systems 

(EuroSys 07), ACM New York, NY, USA, June. 2007, vol. 41, pp. 

        175-187, doi: 10.1145/1272998.1273016 

[9] Debajyoti Mukhopadhyay, Chetan Agrawal, Devesh Maru, Pooja 
Yedale and Pranav Gadekar, "Addressing NameNode Scalability Issue 
in Hadoop Distributed File System using Cache Approach",2014 IEEE. 

[10] Andre Oriani and Islene C. Garcia, " From Backup to Hot Standby: 
High Availability for HDFS"2012 IEEE. 

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung," The 
Google File System", October 19–22, 2003, Bolton Landing, New 
York, USA, 2003 ACM. 

[12] Yin Zhang, Weili Han, Wei Wang,Chang Lei, " Optimizing the storage 
of massive electronic pedigrees in HDFS" ,2012 IEEE 

[13] Petros Zerfos, Hangu Yeo, Brent D. Paulovicks and Vadim Sheinin," 
SDFS: Secure Distributed File System for Data-at-Rest Security for 
Hadoop-as–a-Service",2015 IEEE 

[14] Runqun Xiong, Junzhou Luo, Fang Dong, " SLDP: a Novel Data 
Placement Strategy for Large-Scale Heterogeneous Hadoop 
Cluster",2014 IEEE 

[15] Jeffrey Shafer, Scott Rixner, and Alan L. Cox," The Hadoop 
Distributed Filesystem: Balancing Portability and Performance",2010 
IEEE 

[16] Bo Dong1, 2, Jie Qiu3, Qinghua Zheng1, 2, Xiao Zhong3, Jingwei Li1, 
2, Ying Li3," A novel approach to improving the efficiency of storing 
and accessing small files on Hadoop: a case study by powerpoint 
files",2010 IEEE 

[17] Chandrasekar S, Dakshinamurthy R, Seshakumar P G, Prabavathy B, 
Chitra Babu," A novel indexing scheme for efficient handling of small 
files in Hadoop distributed file system",2013 IEEE 

[18] MENG Bing, GUO Wei-bin, FAN Gui-sheng,QIAN Neng-wu," A 
novel approach for efficient accessing of small files in HDFS: TLB-
MapFile",2016 IEEE. 

[19]  Aishwarya K, Arvind Ram A, Sreevatson M C, Chitra Babu, and 
Prabavathy B," Efficient Prefetching Technique for Storage of 
Heterogeneous small files in Hadoop Distributed File System 
Federation",2013 IEEE. 

[20]  Liu Jiang, Bing Li , Meina Song,"The optimization of HDFS based on 
small files",2010 IEEE. 

[21] Xuhui Liu1,Jizhong Han1,Yunqin Zhong,Chengde Han," Implementing 
WebGIS on Hadoop: A Case Study of Improving Small File I/O 
Performance on HDFS",2009 IEEE. 

[22] Yonghwan KIM,Tadashi ARARAGI,Junya NAKAMURA and 
Toshimitsu MASUZAWA," A Distributed NameNode Cluster for a 
Highly-Available Hadoop Distributed File System",2014 IEEE. 

[23] Liu Changtong," An Improved HDFS for Small File",ICACT 2016. 
[24] Grant Mackey, Saba Sehrish, Jun Wang," Improving Metadata 

Management for Small Files in HDFS",2009 IEEE. 
[25] Ankita Patel, Mayuri A. Mehta," A Novel Approach for Efficient 

Handling of Small Files in HDFS",2015 IEEE. 
[26] Tanvi Gupta, Prof. SS Handa," An Extended HDFS with an AVATAR 

NODE to handle both small files and to eliminate single point of 
failure.",2015 IEEE. 

[27] Bo Dong, Qinghua Zheng, Mu Qiao, Jian Shu, and Jie Yang," BlueSky 
Cloud Framework: An E-Learning Framework Embracing Cloud 
Computing", 2009 Springer-Verlag Berlin Heidelberg. 

[28] Chi-yi Lin and Ying-chen Lin,"A load balancing algorithm for Hadoop 
distributed file system",2015 IEEE. 

[29] ChatupornVorapongkitipun and Natawut Nupairoj," Improving 
Performance of Small-File Accessing in Hadoop",2014 IEEE. 

[30] Xiayu Hua, Hao Wu and Shangping Ren," Xiayu Hua, Hao Wu and 
Shangping Ren",2014 IEEE. 

[31] Wei Dai ,Ibrahim Ibrahim, Mostafa Bassiouni," A New Replica 
Placement Policy for Hadoop Distributed File System",2016 IEEE. 

[32] E.Sivaraman and Dr.R.Manickachezian," High Performance and Fault 
Tolerant Distributed File System for Big Data Storage and Processing 
using Hadoop",2014 IEEE. 

[33] Hadoop archives 
,http://hadoop.apache.org/common/docs/current/hadoop_archives.html. 

[34] Sequence File Wiki, http://wiki.apache.org/hadoop/SequenceFile. 
[35] Map files, 

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/
io/MapFile.html. 

[36] Tom White, The Small Files Problem, 
[37] http://www.cloudera.com/blog/2009/02/02/the-small-files-problem/. 
[38] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc. June 

2009. 
[39] SlideShare site, http://www.slideshare.net/. 
[40] Http://issues.apache.org/jira/browse/HADOOP-1687. 
[41] J. Hendricks, R. Sambasivan, S. Sinnamohideenand, and G.Ganger, 

“Improving small file performance in object-based storage,” 
[42] Technical report, Tech. Report CMU-PDL-06-104, May 2006. 
[43] The website, http://www. exascale.info 


