
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

A COMPLETE OVERVIEW ON BIG DATA ANALYTICS

Savitha.C

 R and D Engineer

EMIX Technologies India Pvt Ltd

No. 9, 1st Main, Ganganagar,Bangalore

 savinish10@gmail.com

Abstract : The reason that is primary of paper is to

provide an in-depth analysis of different platforms

available for doing big information analytics. This

paper surveys different platforms available for big

information analytics and assesses the advantages

and disadvantages of every among these platforms

according to different metrics such as scalability, data

I/O rate, fault tolerance, real-time processing, data

size supported and task help that is iterative. An in

depth description of the pc software frameworks

utilized within each of these platforms can be

discussed with their strengths and drawbacks besides

the apparatus. A number of the critical characteristics

described here could possibly help the visitors for

making an decision that is informed the best choice

of platforms based on their computational

requirements.. So that you can provide more insights

in to the effectiveness of each of the platform into the

context of big information analytics, specific

implementation level details of the widely used k-

means clustering algorithm on different platforms are

also described within the form pseudocode.

Keywords: Big data, MapReduce, graphics

processing units, scalability, big data analytics, big

data

I .Introduction

The scales of petabyte information flooding daily

from internet solutions, social media, astronomy, and

biology science, for instance, have driven the shift of

data-processing paradigm. Big information refers to a

collection of big datasets which will not be processed

database that is utilizing is conventional tools et.al

(72) . The storage, manipulation, and especially

information retrieval of big data have now been

widely re-searched and engineered by academia and

industry. Google’s MapReduce in 30 which leads

this shift. It has influenced new means of taking into

consideration the programming and design of large

systems which are distributed. In contrast to

conventional database management systems

(DBMSs), MapReduce is outstanding for better ease

of use, scalability, and fault-tolerance, but

controversial in programming and effectiveness

complexity due to the abstraction that is low.

Considering that the publication of MapReduce in

2004, there are numerous works focusing on the

limits of MapReduce. It is now the most actively

investigated and data-processing that is solid that is

big. Hadoop in et.al of 7, an implementation that is

open-source of, has been extensively utilized outside

Google. Following the success of MapReduce, many

other data-processing that is big additionally

intending at horizontal scalability, simple API, and

schema free information have actually emerged.

There are three styles being major are developing.

One follows the info parallel concept of MapReduce,

which employs programming that is low-level user-

defined options for general-purpose use, however

with more programming that is versatile, also

improved performance. For example, Spark in 83

supports iterative and computations which can be

interactive. Dryad in et.al 50 provides control that is

communication that is okay and user-defined

operations in place of necessity Map/Reduce.

Another trend takes advantageous asset of the

knowledge that is long-time of utilizing abstractions

being high-level. Into the data storage space layer,

NoSQL (maybe not SQL that is just, such as

MongoDB (67) and Cassandra in 53, implement the

characteristics of scalability, schema-free, and

persistence weighed against traditional data-bases

being relational big data applications. Into the data-

processing layer, systems with this trend either only

develop SQL-like languages together with general

execution machines such as for example Hive et.al 75

or build systems from scratch, including storage,

execution engine, and development model, such as

for instance Dremel in 66. The trend that is remaining

on domain-specific issues, e.g. machine learning

(ML) and stream data processing. Recently, large-

scale ML systems are earnestly researched and

developed, since scalability is amongst the

mailto:savinish10@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

bottlenecks now for ML applications. Representative

ML systems include the GraphLab that is graph-

centric was in 62 and the ML Petuum that is enteric

in 81. S4 (68)and Storm (76) are proposed to process

data that are stream/real-time e.g., inquiries in search-

engines and Tweets in Twit-ter. The subsection that

is categorizing that is following paint an overall

image of the current non-relational big information

systems.

II. Categorization of Big Data Systems

Big information ecosystems are layered software
stacks, in-cluding a database that is low-level a data-
processing engine based on that.The low-level
databases are utilized for data mainte-nance and low-
latency questions which are random. In contrast to
conventional ones, the generation that is brand new

for big data applications are featured with a high
scalability, schema-free, persistence, high supply, and
easy API. Based on the information which can be real
on disk, the sys-tems could be classified as line store,
document shop, graph shop, and shop [85] that is
key-value. Fig. 1(a) shows systems being
representative each category. A database that is
column-oriented attribute values belonging to your
column that is same, instead of rows. A database that
is document-oriented data in documents, with each
document assigned an integral that is exclusive to
retrieve the doc-ument. A database that is graph that
is graph-oriented representing collections of entities
(nodes) and their re-lationships (edges) with one
another. A database that is key-value data as a pair of
key-value pairs, also known as a wide range that is
ssociative arranged into rows. It is built to measure
up to a size that is big.

Fig. 1. Categorization of (a) data storage systems and (b) data-processing systems.

Another dimension that can categorize databases is

data format, including structured, semi-structured,

and unstructured. It chooses exactly how data is

interpreted. Un-structured data, such as for instance

text messages and videos, is information that has not

been arranged into a framework access that is

allowing is not hard elements of the data. Organized

data could be the opposite, arranged therefore each

element may be accessed in several combinations.

Semi-structured data lies between the 2, although not

organized in to a framework, it can have information

that is extra with the information to permit elements

of that data become addressed. Traditional databases

being relational help organized information, but

generation that is brand new such as MongoDB and

Cassandra can support structured and semi-structured

data, along with unstructured information for some

degree.Atop a database is really a data-processing

layer make it possible for data experts, developers,

and business users to explore and analyze

information. As Fig. 1(b) shows, systems in this layer

can be classified along two measurements. Accord-

ing to your development abstraction, as mentioned

earlier, systems like Dremel and AsterixDB utilize

high-level declarative that is SQL-like while others

use mapReduce-like functions being user-defined.

Depending on the input, we categorize current

information which can be big as batch, stream,

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

machine and graph learning processing. Batch

processing is efficient for processing datasets being

large where data are collected, prepared and

distributed in batches. Stream processing emphasizes

in the velocity of the input that is continual such as

for instance user click and request streams on

webpages. Data must certanly be processed in an

occasion that is disallowing that is certain

information together for efficiency. Graph processing

operates on graph information structures and

conducts model parallelism besides the data

parallelism of MapReduce. It usually runs iteratively

on the input that is same each iteration accompanied

by some synchronisation. Graph processing can help

solutions which also are partial ML problems. While,

systems like Petuum and Mahout are developed

especially for ML algorithms, which are formalized

as iterative- convergent programs et.al (81). The goal

of the systems is fast and convergence that is efficient

obtains the optimality of a function that is objective.

Thus, fine-grained fault threshold and strong

consistency for other processing systems may not be

essential for ML issues.

This paper shall concentrate on the study of

information layer that is processing. It shall first

introduce MapReduce, compare it with DBMSs, and

discuss the optimization works for MapReduce. More

surveys being detailed MapReduce and Hadoop is

seen in (55, 57, 72, and 73). This paper will then

overview one other system in the categories

discussed above: batch, stream, graph, and device

learning processing. The area on batch processing

shall cover the 2 programming abstractions: SQL-like

and user-defined. The survey will be more from a

research that is considerable of view, focusing on

distinctive some ideas and model abstractions of

different systems, even though many of them may not

be popularly utilized now. A quantitative that is fair

qualitative contrast of most that available information

that is big systems is important. Nevertheless, no

standard benchmark suite can be obtained yet. This

study may also learn work that is present big data

benchmark building that will be challenging and has

now perhaps not drawn enough attention due to these

benchmarking and assessing pressures of big

information systems. Finally, some classes and

research that is future will probably be talked about.

III B A I S C M A P R E D U C E F R Am E W O R K

MapReduce is just a development model for

processing data that are big large-scale data being

distributed systems, intro-duced by Dean and

Ghemawat (30,31,32). It's simple and abstracts the

information on managing a distributed System, such

as for example parallelization, fault-tolerance,

information dis-tribution and load balancing. It really

is now trusted for the variety of algorithms, including

graph that is large-scale, text processing, information

mining, device learning, sta-tistical device

translation, and many areas et.al 31. There are several

source that is available commercial imple-mentations

of MapReduce, out of that the most one that's popu-

lar Hadoop developed by Apache in et.al 7. This part

will discuss the initial framework that is fundamental

of and then provide a comparison with DBM

A. MapReduce Framework

The MapReduce model has two phases :Map and

Re-duce working on key/value pairs. The Map phase

maps the user written functions and input pairs to

distributed machines generating intermediate

key/value pairs, and the Reduce phase reduces the

intermediate pairs to a sin-gle result. The workflow

of MapReduce execution is as follows

1) The distributed file system (e.g., Google File

System in (42) will first partition the input

information right into a set of M splits (e.g., 64

MB in size) and store a few copies of every split

on different machines for fault tolerance.

2) The MapReduce library will generate a

member of staff and master that is most of the

individual program (M Map tasks and R decrease

tasks). The master assigns work to worker copies

and coordinates all the tasks operating. For

locality, the master will attempt to schedule an

activity that is map a ma-chine which has a

reproduction regarding the correspond-ing input

data.

3) A Map worker will scan its regional input

partition and generate intermediate key pairs

making use of user’s function that is map. The

results are stored on local disk and generally are

split into R partitions for every Reduce task. The

addresses of the outcomes which can be inter-

mediate be informed towards the master. The

master shall forward those areas towards the

Reduce employees.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

4) A Reduce worker will see the intermediate

re-sults from the local disk of each and every task

that is map and then sort the outcomes by their

key values. The user’s Reduce function will

aggre-gate values with all the key that is exact

same generate final results kept in a file system

that is worldwide.

5) The master will ping every worker

occasionally. If any Map or Reduce worker fails,

its task will probably be scheduled to some other

worker that is available.

6) After all of the tasks finish, the user program

will be waked up.

MapReduce has a few benefits which are outstanding

Simplicity: it needs code writers don't have any paral

lel and/or system experience that is distributed. The

sys-tem installation and setup are relatively

straightforward Table 1 Comparison of Parallel

DBMSs and MapReduce

o Fault threshold: Failures are normal for a
com-puter group with huge number of
nodes. MapRe-duce can cope with fine-
grain failures, reduce the amount of work
lost, and doesn't need re-start the task
that is working scratch.

o Flexibility: The input data of

MapReduce can alternatively have any
structure of the schema that is certain.

o Independency: MapReduce can also be

storage space system-independent. The
storage systems supported include files
saved in distributed file system, database
query results, data kept in Bigtable
structured and[24] input files [32].

o Scalability: MapReduce can scale to tens

and thousands of processors.

A. Comparison Between MapReduce and

DBMS Before MapReduce, synchronous DBMSs are

utilized while the approaches for large-scale

information analysis. Fundamentally, all tasks which

are mapReduce be written as comparable DBMS

tasks through the term that is early of, it provoked

strong doubts from Database communities et.al in 29.

Comparisons and debates between DBMS and

MapReduce have now been shown in a number of

articles (32, 33, 55, 70, 74). The debates were toned

down until Stonebraker et al. concluded the

relationship between DBMSs and MapReduce. They

noted that MapReduce is complemen-tary to DBMSs,

not a technology that is competing. The aim of

DBMS is effectiveness while MapReduce aims at

scalability and fault tolerance. The two systems are

plainly improv-ing themselves through drawing the

counterpart’s energy. Works like SCOPE (23)and

Dryad (50) all point that is correct method.

IV. Support for Different Dataflow

MapReduce calls for the issue composition to be Map

that is strict and actions in a batch processing means.

This subsection shall talk about the expansion works

on itera-tive, online and dataflow that is streaming

according to MapReduce framework.

1) Iterative Dataflow: MapReduce does not

support it-erative or recursive straight. Nonetheless,

numerous data analy-sis applications, such as

information mining, graph analysis and community

that is social, require iterative computations. Code

writers can manually issue multiple MapReduce jobs

to implement programs which are iterative. But, this

method causes three performance that is primary.

First, unchanged information from iteration to

iteration will undoubtedly be re-loaded and

reprocessed at each and every iteration, wasting I/O,

network bandwidth and CPU. 2nd, some termination

conditions, like no production modification between

two iterations which can be consecu-tive may itself

invoke a MapReduce task. Third, the MapReduce

jobs of various iterations have to complete serially.

To fix those conditions that are nagging there are a

variety of works on extending MapReduce for

iterative processing (22, 37, 38, 77, 84).Those works

usually need to implement three main extensions of

MapReduce: incorporating an iterative programming

screen, particularly the screen for termination

conditions, caching invariant/ static information in

local disk or memory, and modifying task scheduler

to be sure data reuse across iterations to aid iterative

processing. We shall next introduce some

representative works as examples.

HaLoop: A programmer specifies the cycle human

anatomy and optionally specifies a termination

condition and data being loop-invariant write a

HaLoop (22) program. The mas-ter node of HaLoop

keeps a mapping from each slave node to the data

partitions that this node prepared in the iteration that

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

is previous. The master node will likely then try to

assign to the node an activity which consists of

information which are cached. HaLoop keeps three

forms of caches. First, reducer input cache, caches

the consumer specified loop-invariant tables being

intermediate. So in later iterations, the reducer can

seek out one of the keys into the reducer that is

regional cache to get asso-ciated values and pass

together utilizing the shuffled key to your user-

defined Reduce function. Second, reducer cache that

is out-put stores and indexes the most recent out-put

that is neighborhood each reducer node to reduce the

price of evaluating termination conditions. Third,

mapper input cache, caches the input information

split that the mapper performs a read that is nonlocal

the iteration that is first. Every one of them fits

application that is significantly different.

iMapReduce: Compared with HaLoop, the advance-

ment of iMapReduce (84) is it allows execution that

is asynchronous of iteration. The Map tasks of the

iteration may be overlapped utilizing the Reduce

tasks associated with iteration that is final. This work

assigns a data that is exact same up to a Map task and

a Reduce task. Therefore, there's a communication

that is one-to-one the Map while the Reduce tasks.

The results is supposed to be repaid towards the Map

that is matching task the Reduce task creates specific

documents. The job scheduler constantly assigns a

Map task and its own corresponding Reduce task to

the worker that is reduce that is same system

resources required. The Map can begin processing

the data without waiting for other tasks being map the

process is accelerated. iMapReduce proposes the

thought of persistent Map and Reduce. For a Map

that is task that is persistent all the input information

are parsed and processed, the job will wait for results

from the decrease tasks and stay triggered again. To

implement this, the granularity of information split

has to make sure most of the tasks that are persistent

at the start based on the task that is avail-able. This

will make load balancing challenging.

iHadoop: iHadoop et.al(38) also supports

asynchronous Map/Reduce tasks as iMapReduce.

However, it makes use of scheduling that is dy-namic

of fixed task and node map-ping. It shall not persist

tasks for the iteration that is next. Alternatively, the

paper reckons that using the scale that is sets which

are big the runtime can optimize the duty granularity

so your right time and energy to create, destroy, and

schedule tasks is in-significant towards the time for

you to process the input information. Therefore,

iHadoop could help wider kinds of iterative

applications.

Twister: Similar to iMapReduce’s Map/ that is

Reduce that is twister that is persistent uses very long

running Map/Reduce tasks and does not start new

Map and Reduce tasks for each and every iteration.

It's an runtime that is publish/subscribe that is in-

memory communication that is situated data transfer

in place of a distributed file system. How-ever,

Twister is dependant on the presumption that data

sets can fit into the memory that is distributed which

can be not necessarily the truth.

MapIterativeReduce: MapIterativeReduce

et.al(77)supports iterative Reduce for reduce-

intensive applications such as linear dimension and

regression decrease for Microsoft Azure cloud

platform. It eliminates the barrier between Map and

Reduce by starting reducers plan the data the moment

it becomes available from some mappers. The re-

sults from the iteration that is final would be fed back

into reducers being successive a reducer combines

most of the in-put data and creates the end result that

is last.

2) Online and Streaming Dataflow:

Computations on MapReduce are performed in a

pattern that is batch-oriented namely the complete

input and production of each and every Map or

MapReduce is faster than DBMS, but slower in task

exe-cution time. Longer execution time of

MapReduce is partly because some implementation

certain issues of MapReduce, such as the cost that is

start-up of. You can find reasons which are model-

related. The layout for the data and it has doing most

of the parsing at run time as dining table 1 shows,

DBMS does the parsing at loading time and may also

re-organize the input information for many

optimizations, while MapReduce won’t change.

DBMS also has ad-vanced technologies developed

for decades, such as for example com-pression,

column storage space, or advanced algorithms that

are parallel. In addition, MapReduce has to send

numerous control messages to synchronize the

processing which overhead that is in-creases.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

Reusability: MapReduce will not use index or

schema. Programmers need to parse the structure of

the input files or implement indexes for speedup into

the Map and Reduce programs. Besides, users need

to offer imple-mentations for simple and operations

which are common such as for example selection and

projection. Those rule that is custom be difficult to be

reused or provided by others and it will be error-

prone and suboptimal. Nonetheless, DBMS has

schema that is built-in index that may be queried by

code writers. DBMS additionally supports operators

being numerous high rate of abstractions. Users can

easily specify whatever they want through the

functional system in the place of ways to get it.

The circumstances where MapReduce is superior to

DBMS are et.al 74 to close out, based on the power

of MapRe-duce

• Once-analysis data sets. Those data sets are

not worth your time and effort of reorganization and

indexing in a DBMS. In contrast, DBMS is more

suit-able for tasks needing parsing that is repetitive.

• Complex analysis. Dean and Ghemawat et.al

32 point out some situations where in actuality the

functions which are map too complicated to be

expressed effortlessly in a SQL question, such as for

example extracting the outbound links from a

collections of HTML documents and aggregating by

target document.

• Quick begin analysis. MapReduce

implementations are really easy to configure, to

program and to run.

• Limited-budget task. Most MapReduce

implementations are open-source, while rare open-

source DBMSs that are parallel.

A. Communication Optimization

Communication in Hadoop system is

implemented by inadequate techniques, such as for

example HTTP/RPC. Lu et al. (63) presented

DataMPI, that can be an conversation that is efficient

for big information computing which includes the

conversation and processing of many key-value pairs.

To bridge the 2 aspects of higher end com-puting and

big information computing and expand MPI to sup-

port Hadoop-like big information computing jobs,

they abstract what is required regarding the 4D

(Dichotomic, Dynamic, Data-centric, and

Diversified) bipartite relationship model.

• Dichotomic. The MapReduce as well as

other information which may be show that is

communications being big between two

communicators. The com-munication that is

underlying a graph that is bipartite i.e., the

procedures are dichotomic and be involved in either

the O com-municator or the A communicator.

• Dynamic. Big Data connection features a

dynamic characteristic, what this means is the

product range that is real is wide of tasks being

running each communicator of-ten changes

dynamically because of task finish and launch.

• Data-centric. Jim Gray’s Laws et.al 48 tell

that computations should really be relocated to

important computer data, in the place of information

to your computations in big information computing.

Such concept are situated in lots of information that

can easily be popular are big models and systems.

• Diversified. Although plenty that is

complete of this can be compared among different

information that are big systems may be found, there

stay diversities.

They key-value which can be abstract based

interaction, which capture the conversation that is

important of hadoop-like information computing that

is big. Through the standpoint of development,

numerous information that is big systems (age.g.,

Hadoop MapReduce, S4, or HBase) choose key-

value pair when the core information representation

framework, that is not hard but carries a ability that is

strong carry in-formation that is rich. Consequently,

this will be a undeniable fact that is offer that is great

set based relationship interfaces for big information

computing systems and applications though the

buffer-to-buffer screen signature that is old-

fashioned. Such level that is abstraction that is

decrease that is high program-ming complexity in

parallel Big Data applications.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

Fig. 3 presents the two-layer architecture of DataMPI. In the JVM layer, DataMPI extends the mpiJava design

The usage of DataMPI specification and so on by

powerful procedure management in the Java layer,

optimized buffer management by native IO that is

direct. The lower layer will be the layer that is

indigenous by which JNI is useful for connecting

routines that are top are java-based native MPI

libraries. Weighed against Hadoop, DataMPI gives a

more library and light-weight that is users that can

easily be flexible. Liang et al. [58] use

BigDataBench.

E. Energy Efficiency Optimization

Energy effectiveness is definitely an topic that is data

cen-ters being crucial. Globally, information centers

are predicted to eat about US$30 billion worth of

electricity 12 months that is per et.al 71. Power and

costs that are cooling compared to the IT equipment

it supports and also compensate about 42percent of

this information facilities costs which are running.

There are many magazines for information center

power administration. Nevertheless, energy for

MapReduce clusters has not drawn attention that will

do. It'll be a research that is future that is

guaranteeing.

Nowadays there are broadly two ways to reduce

steadily the energy cost of MapReduce clusters: one

is to power down the employment that is et.al 54 that

is low (56); the other is to match the hardware

resources for the workload faculties, just like the

CPU computing capability (65,79). Both ways are

actually a tradeoff between performance and energy.

1) Energy Down Nodes: The motivation of

(54) and (56) is the fact that CPU that is utilization

that is average is low. Both 2) Match Hardware:

Mashayekhy et al. [65] propose energy-aware

MapReduce scheduling algorithms while satisfying

the answer that is ongoing contract instead of

minimiz-ing time that is operating. It generates

utilization of the truth that same Map or Reduce tasks

consume variant energy and time that is running

various nodes with this combined group that is

underlying. The algorithms first profile the tasks’

energy and time that is running on several types of

nodes, then build an schedule that is optimized future

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

execution the maximum amount of jobs have to run

sometimes, such as for example spam detection. The

scheduler will find the nodes with low power price

along with sat-isfying the clear answer that is

agreement that is ongoing purchase to accomplish the

jobs. Outcomes reveal that the algorithms can acquire

near optimal solutions with significant energy cost

benefits when compared with schedulers intending at

minimizing the time that is right is operating. Wirtz

and Ge [79] adjust the processor regularity on the

basis of the working jobs which are working

calculation requirements. It compares three poli-cies:

1) same regularity for all processors

2) maximum processor regularity within the map and

Reduce func-tions and frequency that is minimal, and

so the compu-tations utilizes fast cores and I/O uses

sluggish ones; and 3) regularity set to bound the

performance loss in only a value individual specified.

This setting makes use of CPUMiser on each node.

CPUMiser will gather performance countertop

information for CPU task then adjust the regularity

precisely. Results show that smart frequency

establishing can enhance the energy effectiveness,

nonetheless, the amount that is famous of be

determined by the feature that is work-load. A work

that is recent evaluates the performance and power

footprint of Hadoop on both real and digital teams,

thinking about the hadoop that is conventional col-

locating information and computing, plus the model

that is alternatngi of these papers head to two

guidelines. Reference [54] makes use of a subset of

the nodes for the MapReduce task and abilities down

others, while [56] uses all the nodes to initial

complete the ongoing work, then powers down all the

nodes after the task finishes. Lang and Patel [54]

define a covering subset (CS), and alter the HDFS

(Hadoops file system) to ensure that one or more

reproduction of each and every offered information

block is within the subset that is addressing. In that

case your nodes perhaps not in the set are disabled

without affecting the possibility associated with

information even though the execution of this work.

The outcomes show that disabling nodes in many

situations that are complete energy expense while the

decrease quantity is dependent upon the applying.

The outcomes additionally expose a celebration that

is energy that is operating tendency even though the

number of disabled nodes increases. Leverich and

Kozyrakis [56] tries in order to avoid pitfalls of [54],

namely HDFS modification, operating time enhance

and storage overprovision. It proposes a technique

called All-In Strategy (AIS) that starts all of the

nodes to perform the job as soon as possible and after

that abilities down the unit that is entire there is

absolutely no task. So the reaction time degra-dation

regarding the ongoing work is predictable, in line

with the time for it to power the hardware up and OS.

Results show that for long and calculation complex

MapReduce jobs, AIS outperforms than CS in

response time and energy preserving.;

3) Match Hardware: Mashayekhy et al. (65)

propose energy-aware MapReduce scheduling

algorithms while satisfying the solution that is

ongoing agreement in the place of minimiz-ing time

that is running. It generates use of the truth that same

Map or Reduce tasks consume variant power and

time that is running different nodes of this blended

group that is underlying. The algorithms first profile

the tasks’ power and time that is running on various

kinds of nodes, then construct an routine that is

optimized future execution the maximum amount of

jobs need to run sporadically, such as for instance

spam detection. The scheduler will find the nodes

with low power price as well as sat-isfying the

answer that is agreement that is ongoing order to

accomplish the jobs. Outcomes reveal that the

algorithms can obtain near optimal solutions with

significant power cost savings compared to

schedulers planning at minimizing enough time that

is correct is running. Wirtz and Ge in 79) adjust the

processor regularity in line with the working jobs that

are working computation needs. It compares three

poli-cies: 1) exact same regularity for many

processors; 2) maximum processor regularity into the

map and Reduce func-tions and minimal regularity

otherwise, therefore the compu-tations utilizes fast

cores and I/O makes use of sluggish ones; and 3)

regularity set to bound the performance loss in only a

value individual specified. This environment employs

CPUMiser on each node. CPUMiser will collect

performance countertop information for CPU task

and then adjust the regularity precisely. Outcomes

reveal that smart frequency establishing can enhance

the energy effectiveness, nevertheless, the particular

level that is famous of be determined by the feature

that is work-load. A work that is recent evaluates the

performance and power footprint of Hadoop on both

genuine and electronic groups, considering the

hadoop that is conventional col-locating information

and computing, in addition to the model that is

alternating

4) Parallel Database Systems

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

AsterixDB: AsterixDB (3, 17) is just a research study

in-volving scientists at UC Irvine as well as UC San

Diego and UC Riverside, which aims to build a infor-

mation that is system that is scalable support for the

storage, querying, and analysis of huge collections of

semi-struc-tured nested information items, with a

new declarative query language (AQL).

The consumer type of AsterixDB is made of two

components that are core the Asterix Data Model

(ADM) additionally the question language (AQL)

targeting information being semi-structured. ADM

supports a number that is wide of data for-mats, and

carries out AsterixDB data query and storage

processing. Every person ADM data instance is

typed, self-describing and saved in a dataset. The

datasets of ADM could be indexed, partitioned over

multiple hosts in a cluster, and replicated to attain

scalability or avail-ability. Datasets could have

connected schema information that describes the core

content of these circumstances.

Asterix Query Language (AQL) may be the question

language for AsterixDB, that is used to access and

manipulate Asterix Data. AQL borrows from XQuery

and Jaql the

programmer-friendly declarative syntax and is

compara-ble to those languages when it comes to

expressive energy. AQL is designed to cleanly match

and manage the info structuring constructs of ADM.

So that it omits numerous XML-specific and features

being document-specific.

AsterixDB uses a scalable motor that is parallel Hy-

racks in (20) to process inquiries. AQL queries are

put together into Hyracks Jobs for execution, that are

in the shape of DAGs contains Operators and

Connectors. Each oper-ator presents a AQL operation

and is responsible for loading partitions of input

information and creating output data partitions, while

each connector redistributes the output partitions and

makes input partitions for the operator that is

next.Operators in Hyracks have a three-part

specification, provided right here.

Operator Descriptors. Every operator is built as an

implementation of the Operator Descriptor program.

Operator Strategies. Hyracks allows an operator to

spell it out the different phases involved in its

assessment in an amount that is high Tasks. Each

activity of a operator really represents a couple of

parallel tasks to be planned on the machines within

the cluster. Hyracks also includes a collection of pre-

existing operators and connectors, for instance, File

Readers/Writers and Mappers operators and M:N

Hash-Partitioner connectors.

V. S t r e a m , g r a p h , a n d m a c hi n e l e a rn

i n g p r o c e s s i n g s y s t e m s

This section is about the other three categories of big

data processing systems. Although general-purpose

sys-tems could also be used of these applications,

specific sys-tems can leverage domain features more

effortlessly, so efficiency, programmability, and

correctness are nor-mally improved. Storm and S4

will soon be discussed as repre-sentatives of stream

processing. Graph systems will introduce GraphLab

and Pregel, which can be useful for ML issues.

Petuum and MLbase are specially de-signed for ML

algorithms.

A. Stream Processing Systems

Data stream applications such as the search that is

real-time social support systems need scalable flow

processing systems operating at high data rates

instead of the long-latency batch processing of

MapReduce-like systems. This sec-tion shall

introduce Storm and S4 systems specific for flow

processing.

Storm: Storm in 76 is an open-sourced flow that is

distributed system developed by Twitter. You can

easily process unbounded streams of data, such as for

instance a hundred million tweets a day. For real-time

processing and computation that is con-tinuous Storm

operates more efficiently than batch processing. More

than 60 organizations are experimenting or using

with Storm.

The Storm model consists channels of tuples flowing

through topologies defined by users as being a Thrift

in et.al 12 ob-ject. Thrift’s cross language services be

sure that any languages could be used to produce a

topology. The vertices of a topology express

computations and sides are data movement. There are

two types of vertices, spouts and bolts. Spouts will be

the way to obtain data flow, and bolts process the

tuples and pass them to your downstream bolts. The

topology might have rounds.S4: Different from

Storm, S4 in (68) uses a decentralized and

architecture that is symmetric ease. There is

absolutely no node that is central the S4 system. S4

design hails from a mix of MapReduce and the

Actors model.

A stream of S4 is described as a series of events in

the form of (K, A) where K is just a key that is tuple-

valued and A may be the attribute, for instance, a

(word, count) event in a word look counting problem.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

The occasions are transmitted through Processing

Elements (PEs) which perform some computations

published by designers. A PE is distin-guished from

other PEs by four elements: its function-ality defined,

the kinds of events it consumes, the feature that is

keyed those occasions, additionally the value

associated with the characteristic. PE is defined by

users and S4 system initiates one PE per each key

that is exclusive the flow. The state of a PE is not

accessible by other PEs.

The PEs operate in logical hosts, called Processing

Nodes (PNs). PNs would be mapped to nodes being

real the interaction layer. The PNs are accountable

for listen-ing the occasions, executing operations

regarding the activities, dis-patching occasions, and

output that is emitting. The interaction layer uses

ZooKeeper too to coordinate between nodes. The

work that is main of layer is to manage cluster,

recover failure, and map nodes.

S4’s fault tolerance is through checkpoints. It does

not help guaranteed in full processing for tuples like

exactly what Storm does.

Graph Processing Systems

To especially support graph that is large-scale on

clusters, parallel systems, such as GraphLab [62] and

Pregel [64], are proposed. They execute graph

models and information parallely. Some of ML

algorithms concentrate on the also dependencies of

information. Its natural to make use of graph struc-

tures to abstract those dependencies. So they are

essen-tially computations that are graph-structured.

GraphLab: GraphLab in 62 adopts a model that is

vertex-centric computations will operate on each

vertex. The ab-straction of GraphLab includes the

info graph, upgrade sync and function procedure. The

info graph manages user-defined information,

including model parameters, algorithm state and

analytical information. Update functions are user-

defined computations changing the info of a vertex

and its own vertices which can be adjacent sides in

the information graph. Those functions will return the

modified data while the vertices that require to be

modified by the change functions within the

iterations which are future. Sync operations are used

to maintain worldwide statistics describing data kept

within the data graph, for example, worldwide

convergence estimators.

Take the PageRank that is popular issue, which re-

cursively describes the ranking of a webpage, for

example, each vertex regarding the data graph

represents a webpage stor-ing the ranking and every

edge represents a web link keeping the weight

associated with website link. The revision function

shall calculate the ranking of a vertex in line with the

weighted links to its neighbor vertices. The neighbor

vertices will soon be sched-uled to the queue waiting

for future enhance if the vertex that is current by

greater than a limit.

For storage space, the information graph is

partitioned accord-ing to domain knowledge that is

specific some graph parti-tion heuristics. Each

partition will be a file that is split a distributed

storage space system, such as HDFS. You will have a

meta-graph storing the connectivity file and structure

places of these partitions. In line with the meta-graph

together with true quantity of physical machines, a

fast balanced distributed loading can be executed.

Then Vertices will simultaneously be executed on

clusters. The GraphLab execution engine supports

execution that is fully asynchronous vertices and also

supports vertex priorities. It requires the graph that is

whole system state to reside in RAM. Each vertex is

connected with a reader and a writer lock. Each

device only runs updates on neighborhood vertices

after finishing lock acquisition and data syn-

chronization. The synchronization and acquisition are

pipelined for various vertices for each machine to re-

duce latency.

The fault tolerance of GraphLab is implemented

utilizing distributed checkpoint mechanism. The

mecha-nism is made completely asynchronously on

the basis of the Chandy-Lamport snapshot. It

incrementally constructs a snapshot without

suspending execution. The machine is supposed to be

recovered through the last checkpoint in case of a

failure.GraphLab has nature support for a number of

ML algorithm properties.

It supports: 1) graph parallelfor expressing

 data dependencies of ML

algorithm;asynchronous iterative computation for

quick conver-gence; dynamic calculation for

prioritizing computa-tions on parameters requiring

more iterations to converge; and serializability for

ensuring that all par-allel executions have

comparable sequential execution to permit ML

experts focus on algorithm design.

PowerGraph [43] is the variation that is subsequent

of. It can efficiently process graphs being natural

graphs with power-law distribution of connectivity.

Those graphs can cause load imbalance issues

because of that the few popular vertices could be with

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

many edges, while lots that is big of vertices are in

fact with few edges.

Pregel: the objective of Pregel [64] is build a sys-tem

which can implement graph that is arbitrary in a

large-scale distributed environment with fault toler-

ance. We will introduce Pregel through comparisons

with GraphLab.

Just like GraphLab, Pregel additionally utilizes the

approach that is vertex-centric. Each vertex is of a

value that is user-defined. Each side is associated

with a value, a source, and a target vertex identifier.

User-defined functions can change the consistant

state of vertices and edges.

There are two main differences which can be

outstanding GraphLab and Pregel. First, the functions

that are update GraphLab can access a vertex, its

connected edges and its neighbor vertices. But, The

Pregel functions can only access a vertex and its

particular edges. The neighbors state will be sent to

the vertex through messages. The big event can

receive messages sent to a vertex in the previous it-

eration, modify the vertex state and its particular

outbound edges, deliver messages to other vertices

which will be gotten in next iteration and graph

topology that is even mutate. 2nd, the graph and ML

computation include a sequence of iterations.

GraghLab supports the iteration that is asynchronous

while Pregel uses the barrier synchronization. Pregel

is inspired by Valiant’s Bulk Synchronous Parallel

(BSP) model. The framework invoke the same user-

defined function to each vertex and execute them in

synchronous, and then computation is syn-chronized

after every iteration for instance the increment of this

global iteration index during an iteration. Therefore,

the model doesn't have to think about information

deadlock or race problems.

The fault tolerance of Pregel normally implemented

by checkpointing. The worker devices helps you to

save their state of the partitions to persistent storage

space plus the master device helps you to save the

aggregator values at the start of each iteration.

Apache Hama [9] is an source that is open motivated

by Pregel. Hama realizes BSP on the HDFS, along

with the Dryad engine from Microsoft.

Machine Learning Processing Systems

The scale of ML dilemmas are in-creasing

exponentially which will be so called ―Big Model on

Big Data [81] to explore the value of big data, while

increasing the ac-curacy of ML models. Therefore,

scalability is one of the bottlenecks for ML research

[36]. That is highly challenging because to style,

implement, and debug distributed ML systems need

ML specialists to address cluster development de-

tails, such as for example race deadlock and

condition, as the

developing of complex mathematics models and

algorithms. Most of conventional processing that is

parallel, such as for instance MapReduce, don't have

normal support for processing ML problems on

clusters. To help ease the use of ML algorithms to

issues that are industrial-scale numerous systems

designed for ML happen developed.

While many of ML problems are represented as

graphs, there's also algorithms like topic modeling

that aren't inefficient or easy to be represented in that

way. Besides, the execution correctness of asynchro-

nous graph-based model is[81] that is confusing. This

subsection will introduce systems that are ML-

centric.

Petuum: Petuum [81] could be the state-of-the-art

distributed ML framework, built on an principle that

is ML-centric. It for-malizes ML algorithms as

iterative-convergent programs. Compared to

GraphLab, Spark as well as other platforms which

support partial solutions for ML dilemmas, it can

support a wider spectrum of ML algorithms. Besides,

Petuum considers data parallel and model

synchronous execution of an ML program, which can

exploit the 3 unique properties of ML algorithm:

mistake threshold, powerful structural dependency

and convergence that is non-uniform. So it converges

more proficiently than other platforms [51].

The Petuum system comprises three elements:

scheduler, employees, and parameter host. The 3

functions which are user-defined are schedule, push,

and pull. The scheduler allows model parallelism by

control-ling which parameters to update by each

worker accord-ing towards the routine function that is

user-defined. This allows ML programs to investigate

dependency that is structural and select independent

parameters for synchronous updates in case of

parallelization mistake and non-convergence. The

routine function additionally allows to consider the

convergence that is non-uniform of ML through

prioritizing parame-ters that needs more iterations to

converge. GraphLab system has also considered this

issue. Petuum uses pi-pelining to overlap the routine

with worker execution. The scheduler is also

accountable for central aggregation through pull

function if needed.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

The employees in Petuum are accountable to get the

parameters and run function push that is synchronous

change. The parameters will synchronize with the

automatically parameter sever using a distributed

provided memory API.

The parameter host provides access that is

international parameters via the provided memory

API. Based on the concept that ML algorithms are

often tolerant to minor errors, the parameter server

implements stale Parallel that is synchro-nous(

consistency model. Therefore community

synchronization and interaction overheads are re-

duced somewhat while maintaining the convergence

guarantees.

Petuum doesn't specify a information abstraction, so

any information storage space system might be

utilized. Fault tolerance is accomplished by

checkpoint-and-restart, but it is currently suitable for

up to hundreds of machines.

Another popular distributed ML platforms is MLbase

MLbase is composed of three elements: MLlib, MLI,

and ML Optimizer. MLlib has been mentioned in

Section IV-A3. This is a distributed ML that is low-

level library against Spark runtime. It had been an

element of the MLbase project and it is now

supported by the Spark com-munity. The library

includes algorithms that are typical classification,

regression, an such like. MLI is atop MLlib, which

presents ML that is high-level development. The

layer that is greatest is ML Optimizer. It solves a

search issue within the algorithms contained in MLI

and MLlib for a most readily useful model that is

applicable. Users specify ML dilemmas by MLbase

task language that is declarative.

Mahout [10] is an open-sourced ML that is scalable

collection. It offers a host for building scalable algo-

rithms, many ML algorithm implementations on

Hadoop, and brand new algorithms on Spark too. All

have actually their very own in-house distributed ML

systems besides these open-sourced systems,

organizations like Amazon, Facebook, and Yahoo.

V I . B I G DA T A B E N C H M A R K

Both quantitatively and qualitatively while more and

more big information processing systems are

proposed and implemented, it is critical to fairly

assess those systems. How-ever, the growth of

standard information which can be big lags behind

due to the complexity, diversity, and var-iability of

workloads. An easy range besides, the application

piles work-loads constructed on cover. Most internet

businesses tend to keep their data and applications

confi-dential, steering clear of the building [78] that

is benchmark. This area will first introduce the most

recent and benchmark that is diverse BigDataBench

and then talk about other rooms focusing on certain

applications.

Wang et al. [78] suggest that big data benchmarking

needs the following demands:

Measuring and comparing data that are big and

architecture.

Being data-centric.

Diverse and representative workloads.

Covering software that is representative.

State-of-the-art strategies.

Usability.

To fulfill the requirements above, they provide

BigDataBench. It really is presently probably the

most diverse and repre-sentative data which can be

big suite when compared with other proposed suites

that are ordinarily for particular applica-tions or

software stacks. They pay attention to investigat-ing

workloads in three most application that is important

based on widely acceptable metrics—the number of

web page views and day-to-day visitors, including

internet search engine, business, and community that

is social. To consider workload candidates, they

make a tradeoff between selecting various kinds of

applications: including online services, offline

analytics, and analytics which can be real-time. The

data types include structured, semi-structured, and

information being un-structured. The benchmarks are

oriented to analytics which can be differ-ent, such as

Hadoop, Spark, MPI, Hive, Hbase, and MySQL. The

summary of BigDataBench is presented in dining

table 3.

HiBench [49] is just a standard suite for Hadoop

MapReduce developed by researchers from Intel.

This standard contains four types of workloads:

Micro Benchmarks (the Sort, WordCount and

TeraSort work-loads), Web Search (the Nutch

Indexing and PageRank workloads), Machine

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

Learning (the Bayesian Classifica-tion and K-means

Clustering workloads), and HDFS Benchmark. The

inputs of the workloads are either information sets of

fixed size or scalable and data sets that are synthetic.

The fixed-size information sets may either be straight

removed from genuine information sets (age.g., the

Wikipedia page-to-page website link database

employed by the PageRank workload, and a subset

associated with the Wikipedia dump data set used by

the Bayesian classi-fication workload) or generated

according to real data sets (e.g., in the Nutch

Indexing workload, the input are the 2.4 million

website pages generated according to an Wikipedia

that is in-house). The synthetic information sets may

either be ran-domly generated (age.g., the inputs used

by the 3 workloads of Micro Benchmarks are

randomly generated using the programs in the

circulation that is hadoop or cre-ated with a couple

statistic distributions (e.g., the input for the K-means

Clustering workload).

There are various other open-sourced data which can

be big rooms. However, like HiBench, they're

primarily for spe-cific applications. Yahoo! Cloud

Serving Benchmark (YCSB) [27] and LinkBench

[15] include online service workloads for cloud

computing and community that is social

correspondingly. The information being big from

AMP Lab [6] is for real-time analysis system. All

those benchmarks are not as diverse as

BigDataBench

.

VI I. O P E N R E S E A R C H I S S U E S

This paper has offered a survey of present data that

are big systems. Some future that is possible

guidelines will bediscussed in this part.

Novel Data Model: though there are mature big

information storage systems now, due to the fact

scale of information grows rapidly, and the raw data

comes from more different sources, it's still a

challenge that is excellent information storage. The

systems need to process data of different structures,

therefore the price of normalizing or formatting

information that are massive be extremely expensive

and unsatisfactory. Consequently, a information that

are versatile must certanly be extremely important.

Novel Processing Model: the genuine amount of

classes of big information workloads additionally

keeps increasing. More parallel algorithms are

developed to extract in-formation that is valuable big

data. Such a situation presents outstanding challenge

for present general function big data systems, they

have been created while they just consider the

existing workloads when. Furthermore, different

classes of applications also have various dependence

on re-sources, building a scalable system model with

effective resource administration should really be a

very problem that is impor-tant. Besides, the look of

numerous data which can be big systems aiming at

particular kinds of applications makes it hard for

businesses with dif-ferent forms of workloads to

consolidate them using one cluster

Big Data Benchmark: you will find currently some

rooms which are bench-mark for big data, in which

BigData-Bench discussed in this paper may be the

state-of-the-art one. Benchmarks need to be

developed based on the area of application too, in

case of biasing systems that are particular. Re-

searchers should expand the standard suite with

increased popular utilized applications, and promote

the suite become publicly used, which will gain the

investigation work of big information system

optimization and processing that is new development.

High Performance Computing: Supercomputers offer

high performance when it comes to calculation,

memory interaction and access. Classic programming

that is parallel, such as for instance MPI, OpenMP,

CUDA, and OpenCL, have performance benefits on

the conventional big data pro-cessing tools, such as

for instance MapReduce. Big data communities have

already resorted to HPC for higher data processing

efficiency and gratification that is real-time such as

for instance DataMPI. The conjuncture of HPC and

data being big draw more attentions.

Energy Efficiency: Since energy is increasingly more

an concern that is essential big computing clusters,

mini-mizing the vitality usage for every big

information job is a critical issue which hasn’t been

commonly investigated. This paper discussed some

work that is associated power ef-ficiency

optimizations considering MapReduce. Big

information processing systems with natively

supported energy efficient features will undoubtedly

be an appealing way that is future.

Large-Scale Machine Learning: Distributed ML

systems on clusters are critical to using advanced ML

algo-rithms at industrial scales for data analysis. The

big ML models now can reach huge amounts of

parameters with mas-sive quantity of data. ML

models have distinct features,

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

such as for example calculation dependencies and

conver-gence that is uneven. We have discussed a

few systems being representative large-scale ML.

But, this considerable research direction continues to

be in its very early phase. More features of ML must

be supported and discovered. Moreover, common

formalism for data/model parallelism is established

being a guidance for future system development.

Other directions like large-scale computation debug-

ging, domain-specific information processing, and

general public assessment that is avail-able, are all

promising research areas, deserving further

exploration and development

 C O N C L U S I O N

Big data-processing systems happen widely

researched by industry and academia. A study was

presented with by this paper of the systems. On the

basis of the processing paradigm, we categorize those

functional systems into batch, stream, graph, and

machine learning processing.. According to the

deficiencies, we discussed the extensions and

optimizations for MapReduce platform, including

help for versatile dataflows, efficient data access and

communication, parameter tuning, along with energy.

We then surveyed other batch processing systems,

including systems which can be general-purpose,

Nephele/PACT and Spark. SQL-like systems tangled

up in this paper are Hive, Shark, SCOPE, AsterixDB,

and Dremel. For stream systems which are

processing Storm and S4 are introduced as

representatives. Scalability is amongst the ML

algorithms bottlenecks. We then talked about how

graphcentric systems like Pregel and GraphLab, and

ML-centric systems like Petuum, parallelize the

graph and ML model, as well as their characteristics

which are distinctive. Future research opportunities

are discussed at the final end associated with study.
REFERENCES
[1] A. Alexandrov et al., ―Massively parallel data analysis with PACTs

on Nephele,‖ PVLDB, vol. 3, no. 2 pp. 1625–1628, 2010. doi:

10.14778/1920841.1921056.

[2] A. Alexandrov et al., ―The Stratosphere platform for big data

analytics,‖ Int. J. Very Large Data Bases, vol. 23, no. 6, pp. 939–
964, 2014.

[3] S. Alsubaiee1 et al., ―Asterixdb: A scalable, open source bdms,‖

Proc. VLDB Endowment, vol. 7, no. 14, 2014.

[4] P. Alvaro et al., ―Boom analytics: Exploring data-centric,

declarative programming for the cloud,‖ in Proc. 5th Eur. Conf.
Comput. Syst., Paris, France, Apr. 13–16, 2010, pp. 223–236, doi:
10.1145/1755913.1755937.

[5] AMPLab at UC Berkeley. MLbase, 2013. [Online] Available:

http://www.mlbase.org

[6] AMPLab, UC Berkeley. Big Data Benchmark, 2014. [Online]

Available: https://amplab.cs.berkeley.edu/benchmark/

[7] Apache. Hadoop, 2014. [Online] Available:

http://hadoop.apache.org

[8] Apache. Flink, 2015. [Online] Available: http://flink.apache.org

[9] Apache. Hama, 2015. [Online] Available: https://hama.apache.org
[10] Apache. Mahout, 2015. [Online] Available:

http://mahout.apache.org

[11] Apache. Tez, 2015. [Online] Available: http://tez.apache.org

[12] Apache. Thrift, 2015. [Online] Available: https://thrift.apache.org

[13] Apache. Yarn, 2015. [Online] Available:

https://hadoop.apache.org/docs/current/ hadoop-yarn/hadoop-yarn-

site/YARN.html

[14] Apache. Zookeeper, 2015. [Online] Available:
https://zookeeper.apache.org

[15] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,

―Linkbench: A database benchmark based on the facebook social

graph,‖ K. A. Ross, D. Srivastava, and D. Papadias, eds., in Proc.
ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA, Jun.
22–27, 2013, pp. 1185–1196, doi: 10.1145/2463676.2465296.

[16] D. Battre ́et al., ―Nephele/PACTs: A programming model and

execution framework for web-scale analytical processing,‖ in Proc. 1st
ACM Symp.
Cloud Comput., Jun. 10–11, 2010, Indianapolis, IN, USA, pp. 119–
130, doi: 10.1145/1807128.1807148.

[17] A. Behm et al., ―ASTERIX: Towards a scalable, semistructured

data platform for evolving-world models,‖ Distrib. Parallel
Databases, vol. 29, no. 3, pp. 185–216, 2011, doi: 10.1007/s10619-
011-7082-y.

[18] B. Behzad et al., ―Taming parallel I/O complexity with auto-

tuning,‖ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Denver, CO, USA, Nov. 17–21, 2013, p. 68, doi:
10.1145/2503210.2503278.

[19] B. Behzad, S. Byna, S. M. Wild, Prabhat, and M. Snir, ―Improving

parallel I/O autotuning with performance modeling,‖ in Proc. 23rd Int.
Symp. HPDC, Vancouver, BC, Canada, Jun. 23–27, 2014, pp. 253–
256, doi: 10.1145/2600212.2600708.

[20] V. R. Borkar et al., ―Hyracks: A flexible and extensible

foundation for data-intensive computing,‖ in Proc. 27th Int. Conf.
Data Eng., Hannover, Germany, Apr. 11–16, 2011, pp. 1151–1162,
doi: 10.1109/ICDE.2011.5767921. [21] S. Brin and L. Page, ―The

anatomy of a large-scale hypertextual web search engine,‖ Comput.
Networks, vol. 30 no. 1–7, pp. 107–117, 1998, doi: 10.1016/S0169-

7552 (98)00110-X.
[22] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, ―HaLoop:

Efficient iterative data processing on large clusters,‖ PVLDB,
vol. 3, no. 1, pp. 285–296, 2010, doi 10.14778/1920841.1920881.

[23] R. Chaiken et al., ―Scope: Easy and efficient parallel processing

of massive data sets,‖ Proc. VLDB Endow., vol. 1, no. 2, pp. 1265–

1276, Aug. 2008, doi: 10.14778/1454159.1454166.

[24] F. Chang et al., ―Bigtable: A distributed storage system for

structured data (awarded best paper!),‖ in B. N. Bershad and J. C.

Mogul, eds., Proc. 7th Symp. Operating Syst. Design
Implementation, Seattle, WA, USA, Nov. 6–8, 2006, pp. 205–218,
USENIX Association. [Online] Available:

http://www.usenix.org/events/osdi06/tech/ chang.html
[25] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears, ―MapReduce online,‖ in Proc. 7th USENIX Symp.
Netw. Syst. Design Implementation, San Jose, CA, USA, Apr. 28–
30, 2010, pp. 313–328. [Online] Available:

http://www.usenix.org/events/ nsdi10/tech/full_papers/condie.pdf

[26] T. Condie et al., ―Online aggregation and continuous query

support in MapReduce,‖ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Indianapolis, IN, USA, Jun. 6–10, 2010, pp. 1115–1118, doi:
10.1145/1807167.1807295.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.

Sears, ―Benchmarking cloud serving systems with YCSB,‖ in J. M.

Hellerstein, S. Chaudhuri, and M. Rosenblum, eds., Proc. 1st ACM

Symp. Cloud Comput., Indianapolis, IN, USA, Jun. 10–11, 2010, pp.
143–154, doi 10.1145/1807128.1807152.

[28] D. Dahiphale et al., ―An advanced mapreduce: Cloud mapreduce,

enhancements and applications,‖ IEEE Trans. Netw. Serv. Manage.,
vol. 11, no. 1, pp. 101–115, 2014, doi:

10.1109/TNSM.2014.031714.130407.

https://hadoop.apache.org/docs/current/
http://www.usenix.org/events/osdi06/tech/
http://www.usenix.org/events/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

[29] D. J. DeWitt and M. Stonebraker, MapReduce: A Major Step

Backwards, 2008. [Online] Available: https://homes.cs.
washington.edu/billhowe/

mapreduce_a_major_step_backwards.html

[30] J. Dean and S. Ghemawat, ―MapReduce: Simplified data

processing on large clusters,‖ in Proc. 6th Symp. Operating Syst.
Design Implementation, San Francisco, CA, USA, Dec. 6–8, 2004,

pp. 137–150. USENIX Association. [Online] Available: http://www.
usenix.org/events/osdi04/tech/dean.html

[31] J. Dean and S. Ghemawat, ―MapReduce: Simplified data

processing on large clusters,‖ Commun. ACM, vol. 51, no. 1, pp. 107–
113, 2008, doi: 10.1145/1327452.1327492.

[32] J. Dean and S. Ghemawat, ―MapReduce: A flexible data

processing tool,‖ Commun. ACM, vol. 53, no. 1, pp. 72–77, 2010, doi:
10.1145/1629175.1629198.

[33] D. DeWitt, MapReduce: A Major Step Backwards, 2008. [Online]

Available: http://homes.cs.washington.edu/billhowe/

mapreduce_a_major_step_backwards.html

[34] J. Dittrich et al., ―Hadoop++: Making a yellow elephant run like a

cheetah (without it even noticing),‖ PVLDB, vol. 3, no. 1, pp. 518–529,
2010,

doi: 10.14778/1920841.1920908.

[35] J. Dittrich et al., ―Only aggressive elephants are fast elephants,‖

PVLDB, vol. 5, no. 11, pp. 1591–1602, 2012.
[36] P. Domingos, ―A few useful things to know about machine

learning,‖ Commun. ACM, vol. 55, no. 10, pp. 78–87, 2012, doi:
10.1145/2347736.2347755.

[37] J. Ekanayake et al., ―Twister: A runtime for iterative

MapReduce,‖ in Proc. 19th ACM Int. Symp. High Perform. Distrib.
Comput., Chicago, IL, USA, Jun. 21–25, 2010, pp. 810–818, doi:
10.1145/1851476.1851593.

[38] E. Elnikety, T. Elsayed, and H. E. Ramadan, ―iHadoop:

Asynchronous iterations for MapReduce,‖ in Proc. IEEE 3rd Int.
Conf. Cloud Comput. Technol. Sci., Athens, Greece, Nov. 29–Dec.
1, 2011, pp. 81–90, doi: 10.1109/CloudCom.2011.21.

[39] M. Y. Eltabakh et al., ―CoHadoop: Flexible data placement and its

exploitation in Hadoop,‖ PVLDB, vol. 4, no. 9, pp. 575–585,

2011, doi: 10.14778/2002938.2002943.
[40] E. Feller, L. Ramakrishnan, and C. Morin, ―Performance and

energy efficiency of big data applications in cloud environments: A

Hadoop case study,‖ J. Parallel Distrib. Comput., 2015, doi:
10.1016/j.jpdc.2015.01.001.

[41] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, ―SPADE:

The systems declarative stream processing engine,‖ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Vancouver, BC, Canada, Jun.
10–12, 2008, pp. 1123–1134, doi: 10.1145/1376616.1376729.

[42] S. Ghemawat, H. Gobioff, and S.-T. Leung, ―The Google file

system,‖ in M. L. Scott and L. L. Peterson, eds., in Proc. 19th ACM

Symp. Operating Syst. Principles, Bolton Landing, NY, USA, Oct.
19–22, 2003,

pp. 29–43, doi: 10.1145/945445.945450.

[43] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,

―Powergraph: Distributed graph-parallel computation on natural

graphs,‖ in Proc. 10th USENIX Symp. Operating Syst. Design
Implementation, Hollywood, CA, USA, Oct. 8–10, 2012, pp. 17–30.

[44] Y. He et al., ―Rcfile: A fast and space-efficient data placement

structure in MapReduce-based warehouse systems,‖ in Proc. 27th Int.
Conf. Data Eng., Hannover, Germany, Apr. 11–16, 2011, pp. 1199–

1208, doi: 10.1109/ICDE.2011.5767933. [45] A. Heise, A.
Rheinla¨nder, M. Leich, U. Leser, and F. Naumann, ―Meteor/sopremo:

An extensible query language and operator model,‖ in Proc.
Workshop End-to-end Manage. Big Data, Istanbul, Turkey, 2012.

[46] H. Herodotou and S. Babu, ―Profiling, what-if analysis, and cost-

based optimization of MapReduce programs,‖ PVLDB, vol. 4, no. 11,

pp. 1111–1122, 2011. [Online] Available:
http://www.vldb.org/pvldb/vol4/ p1111-herodotou.pdf

[47] H. Herodotou et al., ―Starfish: A self-tuning system for big data

analytics,‖ in Proc. 5th
 Biennial Conf. Innovative Data Syst.

Research,

Asilomar, CA, USA, Jan. 9–12, 2011, pp. 261–272. [Online] Available:

www. cidrdb.org; http://www.cidrdb.org/cidr2011/
Papers/CIDR11_Paper36.pdf

[48] T. Hey, S. Tansley, and K. M. Tolle, Eds., The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Res.,

2009. [Online]
Available: http://research.microsoft.com/enus/

collaboration/fourthparadigm/

[49] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, ―The hibench

benchmark suite: Characterization of the mapreduce-based data

analysis,‖ in Proc. IEEE 26th Int. Conf., 2010, pp. 41–51.
[50] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ―Dryad:

Distributed data-parallel programs from sequential building blocks,‖ in

Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., pp.
59–72, New York, NY, USA, 2007, doi: 10.1145/1272996.1273005.

[51] I. King M. R. Lyu, J. Zeng, and H. Yang, ―A comparison of lasso-

type algorithms on distributed parallel machine learning platforms,‖ in

Proc. Workshop Distrib. Mach. Learning Matrix Comput.,
Montreal, QC, Canada, 2014.

[52] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu, ―DEDUCE: At

the intersection of MapReduce and stream processing,‖ in Proc. 13th
Int. Conf. Extending Database Technol., Lausanne, Switzerland,
Mar. 22–26, 2010, vol. 426, pp. 657–662, doi:

10.1145/1739041.1739120.
[53] A. Lakshman and P. Malik, ―Cassandra: A decentralized

structured storage system,‖ Operating Syst. Rev., vol. 44, no. 2, pp.

35–40, 2010, doi: 10.1145/ 1773912.1773922.
[54] W. Lang and J. M. Patel, ―Energy management for MapReduce

clusters,‖ PVLDB, vol. 3, no. 1, pp. 129–139, 2010. [Online]
Available: http://www.comp.nus.

edu.sg/vldb2010/proceedings/files/papers/ R11.pdf

[55] K.-H. Lee et al., ―Parallel data processing with MapReduce: A

survey,‖ SIGMOD Rec., vol. 40, no. 4, pp. 11–20, 2011,
doi:10.1145/2094114.2094118.

[56] J. Leverich and C. Kozyrakis, ―On the energy (in)efficiency of

hadoop clusters,‖ Operating Syst. Rev., vol. 44, no. 1, pp. 61–65,
2010, doi: 10.1145/1740390.1740405.

[57] F. Li, B. C. Ooi, M. Tamer O ̈zsu, and S. Wu, ―Distributed data

management using mapreduce,‖ ACM Comput. Surv., vol. 46, no. 3,
p. 31, 2014, doi: 10.1145/2503009.

[58] F. Liang, C. Feng, X. Lu, and Z. Xu, Performance Benefits of
DataMPI: A Case Study with BigDataBench, Lecture Notes in
Computer Science, vol. 8807. Springer Int. Publishing, 2014, doi

10.1007/978-3-319- 13021-7_9.

[59] H. Lim, H. Herodotou, and S. Babu, ―Stubby: A transformation-

based optimizer for MapReduce workflows,‖ PVLDB, vol. 5, no. 11,
pp. 1196–1207, 2012, doi: 10.14778/ 2350229.2350239.

[60] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu, ―Llama:

Leveraging columnar storage for scalable join processing in the

MapReduce framework,‖ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Athens, Greece, Jun. 12–16, 2011, pp. 961–972, doi:
10.1145/1989323.1989424.

[61] B. T. Loo et al., ―Implementing declarative overlays,‖ in Proc.
20th ACM Symp. Operating Syst. Principles, Brighton, U.K., Oct.
23–26, 2005, pp. 75–90, doi: 10.1145/ 1095810.1095818.

[62] Y. Low et al., ―Distributed graphlab: A framework for machine

learning in the cloud,‖ PVLDB, vol. 5, no. 8, pp. 716–727, 2012.
[Online] Available: http://vldb.org/

pvldb/vol5/p716_yuchenglow_vldb2012.pdf

[63] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, ―DataMPI:

Extending MPI to Hadoop-like big data computing,‖ in Proc. IEEE
28th Int. Parallel Distrib. Process. Symp., Phoenix, AZ, USA, May
19–23, 2014, pp. 829–838, doi: 10.1109/IPDPS.2014.90.

[64] G. Malewicz et al., ―Pregel: A system for large-scale graph

processing,‖ in A. K. Elmagarmid and D. Agrawal, Eds., in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Indianapolis, IN, USA,
Jun. 6–10, 2010, pp. 135–146, doi: 10.1145/1807167.1807184.

[65] L. Mashayekhy, M. M. Nejad, D. Grosu, D. Lu, and W. Shi,

―Energy-aware scheduling of MapReduce jobs,‖ in Proc. IEEE Int.

https://homes.cs/
http://www/
http://homes.cs.washington.edu/billhowe/
http://www.vldb.org/pvldb/vol4/
http://www.cidrdb.org/cidr2011/
http://research.microsoft.com/enus/
http://www.comp.nus/
http://vldb.org/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 9; September -2017

 www.ijcrd.com Page 799-815

Congress Big Data, Anchorage, AK, USA, Jun. 27–Jul. 2, 2014, pp.
32–39, doi: 10.1109/BigData.Congress.2014.15.

[66] S. Melnik et al., ―Dremel: Interactive analysis of web-scale

datasets,‖ Proc. VLDB Endowment, vol. 3, no. 1/2, pp. 330–339,
2010.

[67] MongoDB Inc. Mongodb, 2016. [Online] Available:

https://www.mongodb.com

[68] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, ―S4: Distributed
stream computing platform,‖ in W. Fan, W. Hsu, G. I. Webb, B. Liu, C.

Zhang, D. Gunopulos, and X. Wu, eds., in Proc. 10th IEEE Int. Conf.
Data Mining Workshops, Sydney, Australia, Dec. 13, 2010, pp. 170–
177, doi: 10.1109/ICDMW.2010.172.

[69] D. A. Patterson, ―Technical perspective: The data center is the

computer,‖ Commun. ACM, vol. 51, no. 1, p. 105, 2008, doi:

10.1145/1327452.1327491.

[70] A. Pavlo et al., ―A comparison of approaches to large-scale data

analysis,‖ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Providence,

RI, USA, Jun. 29–Jul. 2, 2009, pp. 165–178, 2009, doi:
10.1145/1559845.1559865.

[71] M. Piszczalski, Locating Data Centers in an Energy-Constrained

World, May 2012. [Online] Available: http://pro.gigaom.com/

2012/05/locating-data-centers-in-an-energyconstrained- world/

[72] I. Polato, R. Re ,́ A. Goldman, and F. Kon, ―A comprehensive

view of hadoop research—A systematic literature review,‖ J. Netw.
Comput. Appl., vol. 46, pp. 1–25, 2014, doi:
10.1016/j.jnca.2014.07.022.

[73] S. Sakr, A. Liu, and A. G. Fayoumi, ―The family of MapReduce

and large-scale data processing systems,‖ ACM Comput. Surv., vol.
46, no. 1, p. 11, 2013,doi: 10.1145/2522968.2522979.

[74] M. Stonebraker et al., ―MapReduce and parallel DBMSs: Friends

or foes?‖ Commun. ACM, vol. 53, no. 1, pp. 64–71, 2010, doi:
10.1145/1629175.1629197.

[75] A. Thusoo et al., ―Hive—A petabyte scale data warehouse using

Hadoop,‖ in Proc. 26th Int. Conf. Data Eng., Long Beach, CA, USA,
Mar. 1–6, 2010, pp. 996–1005, doi: 10.1109/ICDE.2010.5447738.

[76] A. Toshniwal et al., ―Storm@twitter,‖ inProc. SIGMOD Int.
Conf. Manage. Data, 2014, pp. 147–156, doi:
10.1145/2588555.2595641.

[77] R. Tudoran, A. Costan, and G. Antoniu, ―Mapiterativereduce: A

framework for reduction-intensive data processing on azure clouds,‖ in

Proc. 3rd Int. Workshop MapReduce Appl. Date, 2012, New York,
NY, USA, pp. 9–16, doi: 10.1145/2287016.2287019.

[78] L. Wang et al., ―Bigdatabench: A big data benchmark suite from

internet services,‖ in Proc. 20th IEEE Int. Symp. High Perform.
Comput. Architecture, Orlando, FL, USA, Feb. 15–19, 2014, pp.
488–499, doi: 10.1109/HPCA.2014.6835958.

[79] T. Wirtz and R. Ge, ―Improving MapReduce energy efficiency for

computation intensive workloads,‖ in Proc. Int. Green Comput.
Conf. Workshops, Orlando, FL, USA, Jul. 25–28, 2011, pp. 1–8,
doi:10.1109/IGCC.2011.6008564.

[80] R. S. Xin et al., ―Shark: Sql and rich analytics at scale,‖ in Proc.
ACM SIGMOD Int. Conf. Manage. Fata, 2013, pp. 13–24.

[81] E. P. Xing et al., ―Petuum: A new platform for distributed

machine learning on big data,‖ in Proc. 21th ACM SIGKDD Int.
Conf. Knowledge Discovery Data Mining, Sydney, NSW, Australia,
Aug. 10–13, 2015, pp. 1335–1344, doi: 10.1145/ 2783258.2783323.

[82] Y. Yu et al., ―Dryadlinq: A system for general-purpose distributed

data-parallel computing using a high-level language,‖ in Proc. 8th
USENIX Conf. Operating Syst. Design Implementation, 2008,
Berkeley, CA, USA, pp. 1–14. [Online] Available: http://dl.

acm.org/citation.cfm?id = 1855741.1855742

[83] M. Zaharia, N. M. Mosharaf Chowdhury, M. Franklin, S. Shenker,

and I. Stoica, Spark: Cluster Computing With Working Sets, Tech.

Rep. UCB/EECS-2010-53, Dept. Electr. Eng. Comput. Syst., Univ.

California, Berkeley, May 2010. [Online] Available: http://www.eecs.

berkeley.edu/Pubs/TechRpts/2010/EECS- 2010-53.html
[84] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ―iMapReduce: A

distributed computing framework for iterative computation,‖ J. Grid
Comput., 10 vol. 1, pp. 47–68, 2012, doi: 10.1007/s10723-012-9204-9.

[85] I. A. T. Hashema, I. Yaqooba, N. B. Anuara, S. Mokhtara, A.

Gania, and S. U. Khanb, ―The rise of ―big data‖ on cloud computing:

Review and open research issues,‖ Inf. Syst., vol. 47, pp. 98–115, Jan.

2015, doi: 10.1016/ j.is.2014.07.006.

http://pro.gigaom.com/
http://dl/
http://www.eecs/

