
International Journal of Combined Research and Development Volume : 1 ; Issue : 1

REQUIREMENT ANALYSIS FOR CLUSTERING

APPLICATION SERVERS

Mr. Nagesh V

Lecturer, Dept. of Computer Science

Atria Institute of Technology
AIKBS , Campus, AGS Colony

Bangalore , India

Email : nageshunkt@gmail.com

Abstract— In this paper, we discuss the design,
implementation, and experimental evaluation of a

middleware architecture for enabling Service Level

Agreement (SLA)-driven clustering of QoS-aware
application servers. Our middleware architecture supports

application server technologies with dynamic resource

management: Application servers can dynamically change
the amount of clustered resources assigned to hosted

applications on-demand so as to meet application-level

Quality of Service (QoS) requirements. These requirements
can include timeliness, availability, and high throughput and

are specified in SLAs. A prototype of our architecture has

been implemented using the open-source J2EE application
server JBoss. The evaluation of this prototype shows that our

approach makes possible JBoss’ resource usage optimization
and allows JBoss to effectively meet the QoS requirements of

the applications it hosts, i.e., to honor the SLAs of those

applications.
Index Terms— Service Level Agreement, Quality of Service,

QoS-aware application server, QoS-aware cluster, dynamic

cluster configuration, monitoring, load balancing

I. INTRODUCTION

Distributed enterprise applications (e.g., stock trading,

business-to-business applications) can

be developed to be run with application server technologies

such as Java 2 Enterprise Edition (J2EE) servers, CORBA
Component Model (CCM) servers, or .NET. These

technologies can provide the applications they host with an

execution environment that shields those applications from
the possible heterogeneity of the supporting computing and

communication infrastructure; in addition, this environment

allows hosted applications to openly access enterprise
information systems, such as legacy databases.

 These applications may exhibit strict Quality of Service

(QoS) requirements, such as timeliness, scalability, and high
availability that can be specified in so-called Service Level

Agreements (SLAs). SLAs are legally binding contracts that

state the QoS guarantees an execution environment has to
supply its hosted applications.

 Current application server technology offers clustering

and load balancing support that allows the application
designer to handle scalability and high availability

application requirements at the application level; however,

this technology is not fully tailored to honor possible SLAs..
In order to overcome this limitation, we have developed a
middleware architecture that can be integrated in an

application server to allow it to honor the SLAs of the

applications it hosts—in other words, to make it QoS-aware.

The designed architecture supports dynamic clustering of

QoS-aware Application Servers (QaASs) and load balancing.
In current J2EE servers, the clustering support is provided in

the form of a service. In general, that service requires the

initial cluster configuration to consist of a fixed set of
application server instances. In the case of peak load

conditions or failures, this set of instances can be changed at

runtime by a human operator reconfiguring the cluster as
necessary (e.g., by introducing new server instances or by

replacing failed instances). In addition, current clustering

support does not include mechanisms to guarantee that
application-level QoS requirements are met. These

limitations can impede the efficient use of application server

technologies in a utility computing context. In fact, current
clustering design requires overprovision policies to be used

in order to cope with variable and unpredictable load and
prevent QoS requirements violations.

 Our middleware architecture is principally responsible

for the dynamic configuration, runtime monitoring, and load
balancing of a QoS-aware cluster. It operates transparently to

the hosted applications (hence, no modifications to these

applications are required) and consists of the following three
main services: Configuration Service, Monitoring Service,

and Load Balancing Service.

1.1 MIDDLEWARE PLATFORM

 A middleware platform is generally used as an

architectural component for supporting the development and
the execution of distributed applications. Its main role is to

create a level of abstraction so as (i) to present a unified

programming model to application developers and (ii) to
mask out problems of system and network heterogeneity.

Middleware can be composed by multiple layers. There can

be identified four principal levels
• Host Infrastructure Middleware it encapsulates and

enhances native operating system communication and

concurrency mechanisms to create portable and reusable
network programming components;

• Distribution Middleware it defines higher-level distributed

programming models whose reusable APIs and mechanisms
automate the native operating system network programming

capabilities encapsulated by the previous level

• Common Middleware Services the collection of the
services of this level are responsible for augmenting the

distribution middleware layer by defining higher-level

domain-independent components that allow the application
designers to concentrate on the application logic only;

• Domain-specific Middleware Services these services are

tailored to the requirements of a specific application domain
and embody knowledge of that domain.

International Journal of Combined Research and Development Volume : 1 ; Issue : 1

Figure 1. Levels of QoS Integration

 Nowadays the middleware technology is largely
adopted, in order to make easier the development of

distributed applications; however, it is important that the

middleware remains effective for such types of applications

(e.g., enterprise applications) that can impose demands in

terms of resource availability, adaptivity, reliability,

scalability, and timeliness. In fact, these applications must
operate under changeable environment conditions and they

present stringent Quality of Service (QoS) requirements that

are to be met in order to guarantee the correct behavior of the
applications themselves.

 Figure 1 depicts the levels of the software

infrastructure in which a QoS management system should be
provided. Thus, for example, at the operating system level,

there should be mechanisms for reserving such resources as

CPU, memory and threads; the communication level should
provide applications with mechanisms for network

monitoring and reservation; the middleware level should be

constructed out of services for QoS negotiation, monitor an
adaptation and finally QoS monitoring and adaptation can be

applied at the application level as well, by allowing this level

to monitor and adapt the QoS it may require.

2 SERVICE LEVEL AGREEMENTS

In current industrial practice, QoS requirements are specified

in so-called SLAs.
 Our SLA represents a collection of contractual clauses

binding a QoS-aware cluster to the applications it hosts. We

term this SLA a hosting SLA. This is an XML file that
consists of two principal sections: Client Responsibilities and

Server Responsibilities. These define the rights and

obligations of the application clients and the application
server, respectively. Both the Client and Server

Responsibilities may specify different levels of QoS, each

related to some (or all) operations of the hosted application.
Hence, a client obligation could specify the maximum

number of requests clients are allowed to send to the

application, within a defined time interval.
 The following SLA fragment shows the requestRate,

which serves to capture this specific client obligation. The

fragment is part of a larger hosting SLA example for a
conventional bookshop application. It provides clients with

operations such as “login,” “catalog,” “bookDetails,”

“addToCart,” and so on.

<ContainerServiceUsage name=”HighPrority”

 RequestRate=”100/s”>
<Operations>

<Operation path=”catalog.jsp” />

<Operation path=”AddToCart” />
<Operation path=”checkout.jsp” />

<Operation path=”CheckoutCtl” />

</Operations>
...

</ContainerServiceUsage>e allows a J2EE cluster to react to

Server obligations may include service availability

guarantees. The fragment of the hosting SLA below shows

possible availability guarantees for customers of a typical
bookshop application.

<ServerResponsibilities

 serviceAvailability=”0.99”
 efficiency=”0.95”

 efficiencyValidity=”2”>

<OperationPerformance name=”HighPriority”
 maxResponseTime=”1.0s”>

<Operations>

<Operation path=”catalog.jsp” />
<Operation path=”AddToCart” />

<Operation path=”checkout.jsp” />

<Operation path=”CheckoutCtl” />
</Operations>

</OperationPerformance>

...
</ServerResponsibilities>

 The serviceAvailability attribute specifies the

probability with which the hosted application must be
available over a predefined time period. In addition, each

application operation specified as part of the SLA Server

Responsibilities can be lassified according to a QoS attribute.
In the example above, we opted for the response time

attribute maxResponseTime, as it is used in most commercial
SLAs (e.g., [1], [49], [33]) as an effective parameter for

measuring service responsiveness. Finally, as pointed out in

[9], the SLA may also specify the percentage of SLA
violations that can be tolerated, within a predefined time

interval, before the application service provider incurs a (e.g.,

economic) penalty.

3 THE MIDDLEWARE ARCHITECTURE

We have identified the following three main issues in the

design of our architecture:
1. Guaranteeing that the QoS requirements specified in SLAs

are met.

2. Optimizing the resource utilization in addressing item 1,
above.

3. Maximizing the portability of the software architecture

across a variety of specific J2EE implementations.
 To address these issues, we conducted an in-depth

assessment of the state-of-the-art in the design of

architectures developed to meet the QoS requirements of
distributed applications. This helped us to formulate a

number of recommendations and principles that guided our

design. Therefore, for example, these recommendations
include the need for a resource monitoring service that

assesses the resource state at runtime; the design of dynamic

adaptation facilities was based on principles derived from the
feedback control theory [35]. In addition, as we are dealing

with a clustered environment characterized by highly variable

and unpredictable load conditions, dynamic load balancing
mechanisms may be necessary. These mechanisms allow us

to balance client requests among clustered servers, based on

the actual load of those servers, thus preventing server
overloading.

 In view of the above observations, we designed a

middleware architecture incorporating three principal QoS-
aware middleware services: a Configuration Service, a

Monitoring Service, and a Load Balancing Service.

 As already mentioned, this architecture is designed to be
deployed in a cluster of application servers. The cluster

consists of application server instances (termed nodes). Each

node hosts a replica of our services; our architecture

International Journal of Combined Research and Development Volume : 1 ; Issue : 1

implements a primary-backup replication scheme [11] for

fault-tolerance purposes.
 The principal responsibilities of the three services

mentioned above can be summarized as follows:

The Configuration Service is responsible for configuring
the QoS-aware cluster so it can meet the customer application

hosting SLA. The main activities performed by the

Configuration Service include configuring the cluster at the
time the hosting SLA is deployed in the QoS-aware cluster

(at SLA deployment time) and possibly reconfiguring the

cluster at runtime.
 The cluster configuration process consists of building

the initial cluster by forming a group of nodes from a

minimal set of available nodes to ensure the service
availability requirement of the hosting SLA is met.

 The runtime reconfiguration process consists of

dynamically resizing the cluster configuration, by adding or
removing clustered nodes, as needed. Adding nodes can be

necessary in order to handle a dynamically increasing load

and in case a clustered node fails and needs to be replaced by
an operational one (or possibly more than one); for this

purpose, a pool of spare nodes is maintained.

 Releasing nodes may be necessary to optimize the use
of the resources. If the load on a hosted application

significantly decreases, some of the nodes allocated to that

application can be dynamically deallocated and included in
the pool of spare nodes for further usage.

The Monitoring Service is in charge of monitoring the QoS-
aware cluster at application runtime so as to detect possible 1)

variations in the cluster membership, 2) variations in cluster

performance, and 3) violations of the hosting SLA.
 Thus, the Monitoring Service periodically checks the

cluster membership configuration to detect whether clustered

nodes should join or leave the cluster following failures or
voluntary connections to (or disconnections from) the cluster.

In addition, it monitors data such as cluster response time,

client request rate, and cluster SLA violations to detect

whether the cluster-delivered QoS deviates from what is

required and specified in the hosting SLA. Specifically, this

service makes use of a collection of parameters computed
and updated at run time. These parameters allow he

Monitoring Service to keep track of the dynamic behavior of

the cluster in order to check whether or not the cluster is
honoring the hosting SLA at runtime; they serve to maintain

1) the cluster’s operational conditions trend, 2) the

operational conditions trend of each clustered node, and 3)
the cluster violation rate trend.

 The Load Balancing Service is implemented at the

middleware level and balances the load of HTTP client
requests among the clustered nodes; it contributes to meeting

the hosting SLA by preventing the occurrence of node

overload and avoiding the use of resources that have become
unavailable (e.g., failed) at runtime. The reason for

implementing load balancing at the middleware level is

twofold; namely, implementing load balancing at this level
allows independence from any underlying operating system.

In addition, the designed Load Balancing Service can easily

detect specific application server conditions, such as server
response time and cluster membership configuration. The

Load Balancing Service we have developed can be thought of

as a reverse proxy server that essentially intercepts client
HTTP requests for an application and dispatches these

requests to the nodes hosting that application. It includes

support for both request-based and session-based load
balancing. With request-based load balancing, each

individual client request is dispatched to any clustered node

for processing; in contrast, with sessionbased load balancing,
client requests belonging to a specific client session are

dispatched to the same clustered node.

The Load Balancing Service is responsible for

1. intercepting each HTTP client request,

2. selecting a target node that can serve that request by using
specific load balancing policies,

3. deftly manipulating the client request to forward it to the

selected target node,
4. receiving the reply from the selected target node, and,

finally,

5. providing a reply to the client who has triggered the
request.

 The load balancing policy embodied in our Service

(termed WorkLoad policy) is an adaptive policy, as we are
interested in dynamically balancing the load among clustered

nodes. This policy enables the Load Balancing Service to

select a lightly loaded node among those in the cluster in
order to serve client requests.

3.1QoS-Aware Middleware Services Interactions

 Our QoS-aware middleware services cooperate with each

other to ensure hosting SLA enforcement and monitoring. Fig.

2 shows how they interact.

Fig 2 QoS-Aware Middleware Services Interactions

 In Fig. 2, client requests are intercepted by the Load

Balancing Service. For each request, the QoS delivered by
the cluster is compared to the desired level of QoS specified

in the hosting SLA in order to monitor adherence to this SLA.

To this end, the Configuration Service makes the hosting
SLA content available to the Monitoring Service. The

Monitoring Service cooperates with the Load Balancing

Service to obtain the QoS delivered by the cluster. Based on
the retrieved QoS data, the Monitoring Service computes and

updates the monitoring parameters (see Section 4), which

serve to check whether the cluster operational conditions are
close to violating the hosting SLA. Hence, the Monitoring

Service first monitors the SLA Client Responsibilities of the

hosting SLA. If clients send a higher number of requests than
that allowed, clients are violating the SLA. No corrective

actions are performed to reconfigure the cluster in this case;

rather, an application level exception is raised that may cause
the misbehaving clients to be put in a position not to interfere

with the properly behaving ones. Second, the Monitoring

Service monitors the Server Responsibilities of the hosting
SLA. If it detects that the cluster SLA violation rate trend is

close to breaching the hosting SLA, it invokes the

Configuration Service so as to reconfigure the cluster. In this
case, the Configuration Service acts upon the cluster by

adding new nodes up to a predefined limit. That limit is a

configuration parameter obtainable via either application
benchmarking or application modeling. Its purpose is to

identify an upper boundary above which adding new nodes

does not introduce further significant performance
enhancements. This can be caused by factors such as

increased coordination costs for cluster management and

bottlenecks due to shared resources such as a centralized load
balancing service or a centralized DBMS.

 Note that the Configuration Service can augment the

cluster by introducing one new node at a time or more than
one in a single action. When adding one node at a time, a

International Journal of Combined Research and Development Volume : 1 ; Issue : 1

waiting time elapses between the Configuration Service

reconfigurations following each node inclusion. This time
may be useful for handling the transient phase of a new

added node. The transient phase represents the time elapsed

from the introduction of the new node in the cluster until it
reaches a steady state enabling it to serve the client requests.

On the other hand, adding more than one node at a time can

be useful to deal with possible flash crowd events. In fact,
these events may not be fully resolved by adding just one

node at the time to the cluster, owing to the above-mentioned

transient phase.
 If the Monitoring Service detects that the cluster is

effectively responding to the injected client load, it invokes

the Configuration Service to act upon the cluster by releasing
clustered nodes, as they are no longer necessary. In

configuring/reconfiguring the cluster, the Configuration

Service produces a resource plan object. This object includes
the IP address of each clustered node belonging to the built

cluster configuration. In essence, the resource plan specifies

the resources to be used in order to construct the QoS-aware
cluster capable of meeting the input hosting SLA.

4.A CASE STUDY: THE ENHANCED JBOSS

APPLICATION SERVER

 JBoss consists of a collection of middleware services

for communication, persistence, transactions, and security
[18]. These services interact by means of a microkernel based

on the Java Management eXtension (JMX) specifications
[29].

 Fig.3 shows how the QoS-aware cluster is

implemented with a number of clustered QaAS nodes.
 This figure shows that every clustered node incorporates a

replica of the Configuration Service, Monitoring Service, and

Load Balancing Service, each implemented and integrated
into the JBoss application server as an MBean. Only one

node in the cluster is responsible for SLA enforcement,

monitoring, and load balancing. We term this node the cluster

Leader. The remaining nodes, called slave nodes, are used as

backup servers in case the Leader crashes.

 Possible Leader crash during configuration (or runtime
reconfiguration) is detected by the Configuration Services in

the slave nodes through their (local) Monitoring Services.

These Monitoring Services are alerted of the Leader’s crash
by the underlying group communication mechanism, namely,

JGroups [24], included in the standard JBoss application

server. JGroups [2] provides the clustered nodes with
reliability properties that include lossless message

transmission, message ordering, and atomicity. As a result,

should Leader crash occur, the following simple recovery
protocol is performed by the Configuration Service instances

deployed in the slave nodes. Every Configuration Service is

identified by a unique identifier (ID) consisting of the IP
address of the machine where the Configuration Service is

deployed. In addition, all Configuration Services have a

consistent cluster configuration state object; this is the
resource plan object mentioned earlier and consists of a list

of the IDs of the available clustered nodes. When Leader

crash is detected by the slave Monitoring Services, the latter
inform their local Configuration Services that a new Leader

must be elected. The Configuration Services examine the IDs

of the available nodes in the cluster configuration state and
elect the server with the minimum ID as the new Leader.

Note that, owing to the JGroups reliability properties

mentioned earlier, all clustered nodes have a consistent view
of the current cluster membership; hence, they can easily

apply the simple deterministic algorithm for Leader election

introduced above.

Fig 3 QOS aware application server

 The first election of the cluster Leader is triggered by
the hosting SLA deployment. In fact, the QaAS node where

that deployment occurs becomes the Leader. The

Configuration Service in the Leader node parses the input
hosting SLA to extract the QoS parameters that guide the

required cluster configuration (client requestRate,

serviceAvailability, efficiency); it then makes them available
to the Monitoring Service responsible for checking cluster

performance. For this purpose, the Monitoring Service is

constructed out of three components: SLA Violations
Monitor, Evaluation and Violation Detection Service, and

Cluster Performance Monitor.

 In general, these components interact with each other to
implement a monitoring mechanism capable of dynamically

adapting to modifications of both the client load
characterization and node operational conditions. In our

implementation, we assume that node performance

degradation can be due to the load imposed by other services
running on the nodes (nodes can concurrently host and run

services other than QaAS).

 The above-mentioned Monitoring components are
invoked when incoming client requests are intercepted by the

Load Balancing Service. These requests are intercepted by a

LoadBalancingFilter implemented using the Servlet Filter
technology [17]. The main responsibilities of the Monitoring

components can be summarized as follows: The SLA

Violations Monitor is responsible for verifying whether or
not the SLA efficiency attribute is met within the SLA

efficiency validity period. When violations of the hosting

SLA occur 4.1 4.1 Experimental Evaluation
 The prototype described above has been used to

carry out a set of experiments aimed at assessing 1) the

overhead introduced by our middleware services in the JBoss
application server, 2) the scalability properties of our

QoSaware cluster, and 3) the resource optimization

achievable in a QoS-aware cluster, while honoring the

hosting SLA.

 In a test of several Linux machines interconnected by a

dedicated 1 Gb Ethernet LAN. Each machine is a 2.66 Ghz
Intel Xeon processor, equipped with 2 GB RAM. In the

experiments described below, one of these machines is

dedicated to host the cluster Leader; the other machines are
used to host either the QaAS slave nodes serving the client

requests or the client program used to generate artificial load

in the cluster. In addition, a dual-processor machine is
dedicated to hosting the database used in the experimental

evaluation, namely MySQL [34].

 As for the client program, we implemented our own
program in order to 1) specify a variety of client load

distributions, 2) specify different client request rates, and 3)

International Journal of Combined Research and Development Volume : 1 ; Issue : 1

simulate typical behavior of common browsers by enabling

caching of the static contents of the HTTP client requests.

 4.1.1 QaAS Overhead Evaluation

 First concern was to assess whether our middleware

services were adding unnecessary overhead to the cluster

response time and throughput, in the absence of failures. For
this purpose, we instantiated the middleware services in the

cluster introduced earlier and used from one up to four QaAS

nodes. With these configurations, we ran two sets of tests. In
the first set, we directly injected equally distributed artificial

client requests to each a vailable standard JBoss node. In the

second set of tests, we deployed the hosting SLA, thereby
enabling our services and directed the client requests to the

Load Balancing Service.

 In both cases, the cluster provided the same throughput
and response time, showing that QaAS does not introduce

any significant overhead.

 Note that introducing a reverse proxy implies
performance penalties; however, these are balanced by the

HTTP protocol optimizations performed by the Load

Balancing Service. Similar results can be obtained with
advanced HTTP reverse proxies such as Apache HTTP

server with mod_jk [32].

 To conclude this section, we measured the saturation

point of the Load Balancing Service. For this purpose, we
used the in-memory database [19] replicated in each

clustered

 nodes and then through the Load Balancing Service until we
were able to identify the maximum load above which the

Load Balancing Service becomes a bottleneck. From this test,

we observed that the Load Balancing Service was capable of
supporting up to 450 requests per second introducing no

overhead. Note that this figure depends principally on the

Web page size rather than the number of nodes used in the

cluster.

4.1.2 QaAS Scalability Evaluation
The second experiment was conducted to evaluate the

scalability of the QoS-aware cluster we had developed. In

this experiment, we varied the number of nodes in the cluster
starting by one node, scaling up to four nodes. The obtained

results are shown in Table 1. It is clear that, by augmenting

the number of QaAS clustered nodes, QaAS does scale, even
if not in an entirely linear fashion. In fact, as evident in Table

1, for two nodes, throughput is exactly double compared to

the value obtained with one node. With three and four nodes,
throughput keeps on augmenting, although not linearly. We

identified the cause of this behavior in the database, which

becomes a bottleneck. Note that the Load Balancing Service
could not have caused these performance anomalies, as

throughput is below the 450 requests per second mentioned

in the previous section.

 4.1.3 Resource Utilization Evaluation

The purpose of this final experiment was to assess the ability

of our middleware to optimize clustered nodes utilization
without causing hosting SLA violations. In carrying it out,

we assumed that the absence of dynamic clustering

techniques (such as those enabled by QaAS) means a
resource overprovision policy is used. This statically

allocates as many nodes as possible to ensure honoring the

hosting SLA. The maximum number of nodes available was
fixed to four. Therefore, in an over-provision policy, all four

nodes are used; in contrast, to honor the bookshop hosting

SLA, our middleware allowed us to dynamically allocate a
minimum of one up to four clustered QaAS nodes depending

on the imposed load at different time intervals.

 For the purposes of this experiment, nodes were made
available in a pool of spare nodes ready to be included in the

cluster as required. cluster following a simple request

distribution: Our program client gradually raised bookshop
application HTTP request rate up to 360 requests per second;

the load then gradually decreased to 2 requests per second.

The bold line in Fig. 4 shows this distribution. It follows that,
if no QaAS is being used, the standard JBoss clustering

approach has to allocate all four available nodes and maintain

them allocated to the bookshop application for the entire
duration of the test, regardless of the actual client load. In

other words, it needs resource overprovision (see the lighter

area in Fig. 4), which guarantees the hosting SLA is met. In
contrast, QaAS dynamically adjusts the cluster size as

necessary, augmenting the number of clustered nodes as load
increases and releasing nodes as load decreases, as illustrated

by the darker area in Fig. 4. In conclusion, to offset SLA

violations, the QaAS trend in resizing the cluster follows the
distribution of the imposed load, as shown in Fig. 4 (yet

again, the darker area mentioned above). In this test, we also

measured the percentage of SLA violations (see Fig. 5). Here,
the peaks correspond to the instant in which a new node had

to be added to the cluster for not incurring SLA efficiency

requirement violations; however, as can be seen in Fig. 4, the

SLA violation rate is maintained below the limit imposed by

the hosting SLA.

Fig 4. Resource Utilization

International Journal of Combined Research and Development Volume : 1 ; Issue : 1

Fig 5.SLA Violation

Conclusion

 In our architecture, the size of the cluster can change at

runtime, in order to meet nonfunctional application
requirements specified within what we have termed a hosting

SLA.

 The experimental results we have presented show
the effectiveness of our approach; in particular, they show

that the efficient use of resources and the strict constraints

imposed by the SLA can be addressed by means of dynamic
reconfiguration mechanisms even in the case of such

complex systems as a cluster of J2EE application servers.

 We are investigating issues of dynamic resource

management when multiple applications are concurrently

deployed in a J2EE server cluster; these applications have
their own hosting SLAs and compete for the use of the same

clustered nodes.

REFERENCES

[1] “Service Level Agreement (SLA),” http://www.
wilsonmar.com/ 1websvcs.htm, 2006.

[2] T. Abdellatif, E. Cecchet, and R. Lachaize, “Evaluation of

a Group Communication Middleware for Clustered J2EE
Application

Servers,” Proc. Int’l Symp. Distributed Objects and
Applications (DOA ’04), Oct. 2004.

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.

Kalantar, S. Krishnakumar, D.P. Pazel, J. Pershing, and B.
Rockwerger, “Oceano-SLA Based Management of a

Computing Utility,” Proc. Seventh IFIP/IEEE Int’l Symp.

Integrated Network Management (IM)
May 2001.

[4] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster

Reserve: A Mechanism for Resource Management in Cluster-
Based Network,” Proc. ACM SIGMETRICS Conf., June

2000.

[5] J. Balasubramanian, D.C. Schmidt, L. Dowdy, and O.
Othman, “Evaluating the Performance of Middleware Load

Balancing Strategies,” Proc. Eighth Int’l IEEE Enterprise

Distributed Object Computing Conf. (EDOC ’04), Sept. 2004.
[6] “WebLogic Clustering,” BEA Systems, http://e-

docs.bea.com/ wls/docs81/cluster/, 2006.

[7] “BEA WebLogic Server 8.1 Overview: The Foundation
for Enterprise Application Infrastructure,” BEA Systems,

Aug. 2003.

[8] S. Bouchenak, F. Boyer, E. Cecchet, S. Jean, A. Schmitt,
and J.B. Stefani, “A Component-Based Approach to

Distributed System Management—A Use Case with Self-

Manageable J2EE Clusters,” Proc. 11th ACM SIGOPS
European Workshop, Sept. 2004.

[9] M.J. Buco, R.N. Chang, L.Z. Luan, C. Ward, J.L. Wolf,

and P.S. Yu, “Utility Computing SLA Management Based
Upon Business Objectives,” IBM Systems J., 2004.

[10] ObjectWeb home page, ObjectWeb Consortium,

http://www. objectweb.org, 2006.
[11] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed

Systems —Concepts and Design, fourth ed. Addison-Wesley,

2005.
[12] M. Debusmann and A. Keller, “SLA-Driven

Management of Distributed Systems Using the Common
Information Model,” Proc. Eighth Int’l IFIP/IEEE Symp.

Integrated Management (IM), Mar. 2003.

[13] “SPECjAppServer2004,” Standard Performance
Evaluation Corp., http://www.spec.org/jAppServer2004,

2006.

[14] B. Roehm et al., IBM WebSphere Application Server
V6 Scalability and Performance Handbook. Redbooks IBM

Corp., 2004.

[15] B. Roehm et al., IBM WebSphere V5.1 Performance,

Scalability, and High Availability WebSphere Handbook

Series. Redbooks IBM Corp., 2004.

[16] P. Asadzadeh et al., “Global Grids and Software
Toolkits: A Study of Four Grid Middleware Technologies,”

High-Performance Computing— Paradigm and Infrastructure,

2006.
[17] Servlet filter, http://java.sun.com/products/servlet/Filters.

html, 2006.

[18] M. Fleury and F. Reverbel, ”The JBoss Extensible
Server,” Proc.

ACM/IFIP/USENIX Int’l Middleware Conf., June 2003.

 [19] HSQLDB, http://www.hsqldb.org/, 2006.
[20] The WebSphere Application Server, IBM, http://www-

306.ibm. com/software/webserver/appserv, 2006.

[21] “Utility Computing,” IBM Systems J., vol. 43, 2004.

---******------

http://e-docs.bea.com/
http://e-docs.bea.com/
http://www/
http://www-306.ibm/
http://www-306.ibm/

	PointTmp

