
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 28

A Secure Erasure Code-Based Cloud Storage System

with Secure Data Forwarding

Nagarjuna Y
1
 , Shiva Kumar Reddy K

2
, Siddharth Katariya

3
 ,A Adesh T G

4
 , Prof. Suresh T

5

1,2,3,4,5

 Department of CSE,BITM, Bellary Karnataka
1
nagyalamanchili9@gmail.com ,

2
 shivakumarreddy707@gmail.com ,

3
siddharthkatariya1@gmail.com ,

4
 adesh2424@gmail.com.

Abstract : A cloud storage system,

consisting of a collection of storage

servers, provides long-term storage

services over the Internet. Storing data in a

third party’s cloud system causes serious

concern over data confidentiality. General

encryption schemes protect data

confidentiality, but also limit the

functionality of the storage system because

a few operations are supported over

encrypted data.

Constructing a secure storage system that

supports multiple functions is challenging

when the storage system is distributed and

has no central authority. We propose a

threshold proxy re-encryption scheme and

integrate it with a decentralized erasure

code such that a secure distributed storage

system is formulated. The distributed

storage system not only supports secure

and robust data storage and retrieval, but

also lets a user forward his data in the
storage servers to another user without
retrieving the data back. The main technical
contribution is that the proxy re-encryption
scheme supports encoding operations over
encrypted messages as well as forwarding
operations over encoded and encrypted
messages. Our method fully integrates
encrypting, encoding, and forwarding. We
analyze and suggest suitable parameters for
the number of copies of a message
dispatched to storage servers and the number
of storage servers queried by a key server.
These parameters allow more flexible
adjustment between the number of storage
servers and robustness.

Keywords: Decentralized erasure code,

proxy re-encryption, threshold cryptography,

secure storage system.

1. INTRODUCTION

As high-speed networks and ubiquitous

Internet access become available in recent

years, many services are provided on the

Internet such that users can use them from

anywhere at any time. For example, the

email service is probably the most popular

one. Cloud computing is a concept that

Treats the resources on the Internet as a

unified entity, a cloud. Users just use

services without being concerned about

how computation is done and storage is

managed. In this paper, we focus on

designing a cloud storage system for

robustness, confidentiality, and

functionality. A cloud storage system is

considered as a large-scale distributed

storage system that consists of many

independent storage servers.

 Data robustness is a major

requirement for storage systems. There

have been many proposals of storing data

over storage servers. One way to provide

data robustness is to replicate a message

such that each storage server stores a copy

of the message. It is very robust because

the message can be retrieved as long as

one storage server survives. Another way

is to encode a message of k symbols into a

code word of n symbols by erasure coding.

To store a message, each of its code word

symbols is stored in a different storage

mailto:nagyalamanchili9@gmail.com
mailto:shivakumarreddy707@gmail.com
mailto:siddharthkatariya1@gmail.com
mailto:adesh2424@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 29

server. A storage server failure

corresponds

to an erasure error of the code word

symbol. As long as the number of failure

servers is under the tolerance threshold of

the erasure code, the message can be

recovered from the code word symbols

stored in the available storage servers by

the decoding process. This provides a

tradeoff between the storage size and the

tolerance threshold of failure servers. A

decentralized erasure code is an erasure

code that independently computes each

code word symbol for a message. Thus,

the encoding process for a message can be

split into n parallel tasks of generating

code word symbols. A decentralized

erasure code is suitable for use in a

distributed storage system. After the

message symbols are sent to storage

servers, each storage server independently

computes a code-word symbol for the

received message symbols and stores it.

This finishes the encoding and storing

process. The recovery process is the same.

Storing data in a third party’s cloud system

causes serious concern on data

confidentiality. In order to provide strong

confidentiality for messages in storage

servers, a user can encrypt messages by a

cryptographic method before applying an

erasure code method to encode and store

messages. When he wants to use a

message, he needs to retrieve the code

word symbols from storage servers,

decode them, and then decrypt them by

using cryptographic keys. There are three

problems in the above straightforward

integration of encryption and encoding.

First, the user has to do most computation

and the communication traffic between the

user and storage servers is high. Second,

the user has to manage his cryptographic

keys. If the user’s device of storing the

keys is lost or compromised, the security is

broken. Finally, besides data storing and

retrieving, it is hard for storage servers to

directly support other functions. For

example, storage servers cannot directly

forward a user’s messages to another one.

The owner of messages has to retrieve,

decode, decrypt and then forward them to

another user.

2 RELATED WORKS

We briefly review distributed storage

systems, proxy re-encryption schemes, and

integrity checking mechanisms.

2.1 Distributed Storage Systems

At the early years, the Network-Attached

Storage (NAS) and the Network File

System (NFS) provide extra Storage

devices over the network such that a user

can access the storage devices via network

connection. Afterward, many

improvements on scalability, robustness,

efficiency, and security were proposed.

A decentralized architecture for storage

systems offers good scalability, because a

storage server can join or leave without

control of a central authority. To provide

robust-ness against server failures, a

simple method is to make replicas of each

message and store them in different

servers. However, this method is

expensive as z replicas result in z times of

expansion.

One way to reduce the expansion rate is to

use erasure codes to encode messages. A

message is encoded as a code word, which

is a vector of symbols, and each storage

server stores a code word symbol. A

storage server failure is modeled as an

erasure error of the stored code word

symbol. Random linear codes support

distributed encoding, that is, each code

word symbol is independently computed.

To store a message of k blocks, each

storage server linearly combines the blocks

with randomly chosen coefficients and

stores the code word symbol and

coefficients. To retrieve the message, a

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 30

user queries k storage servers for the

stored code word symbols and coefficients

and solves the linear system. Dimakis et al.

considered the case that n ¼ ak for a fixed

constant a. They showed that distributing

each block of a message to v randomly

chosen storage servers is enough to have a

probability 1 _ k=p _ oð1Þ of a successful

data retrieval, where v ¼ b ln k, b > 5a,

and p is the order of the used group. The

sparsity parameter v ¼ b ln k is the

number of storage servers which a block is

sent to. The larger v is, the communication

cost is higher and the successful retrieval

probability is higher. The system has a

light data confidentiality because an

attacker can compromise k storage servers

to get the message.

Lin and Tzeng addressed robustness and

confidenti-ality issues by presenting a

secure decentralized erasure code for the

networked storage system. In addition to

storage servers, their system consists of

key servers, which hold cryptographic key

shares and work in a distributed way. In

their system, stored messages are

encrypted and then encoded. To retrieve a

message, key servers query storage servers

for the user. As long as the number of

available key servers is over a threshold t,

the message can be successfully retrieved

with an overwhelming probability.

One of their results shows that when

there are n storage

 p p

servers with n

¼ ak

k, the parameter

v is b

k ln k

with

b >

5a , and each

key

ffiffiffiserver

queries 2 storage

servers

for

 ffiffiffi

each retrieval request, the probability of a

successful retrieval is at least 1 _ k=p _

oð1Þ.

2.2 Proxy Re-Encryption Schemes

Proxy re-encryption schemes are proposed

by Mambo and Okamoto and Blaze et al.

In a proxy re-encryption scheme, a proxy

server can transfer a ciphertext under a

public key PKA to a new one under

another public key PKB by using the re-

encryption key RKA!B. The server does not

know the plaintext during transformation.

Ateniese et al. proposed some proxy re-

encryption schemes and applied them to

the sharing function of secure storage

systems. In their work, messages are first

encrypted by the owner and then stored in

a storage server.

Fig. 1. A general system model of our

work.

When a user wants to share his messages,

he sends a re-encryption key to the storage

server. The storage server re-encrypts the

encrypted messages for the authorized

user. Thus, their system has data

confidentiality and supports the data

forwarding function. Our work further

integrates encryption, re-encryption, and

encoding such that storage robust-ness is

strengthened.

Type-based proxy re-encryption schemes

proposed by Tang provide a better

granularity on the granted right of a re-

encryption key. A user can decide which

type of messages and with whom he wants

to share in this kind of proxy re-encryption

schemes. Key-private proxy re-encryption

schemes are proposed by Ateniese et al. In

a key-private proxy re-encryption scheme,

given a re-encryption key, a proxy server

cannot determine the identity of the

recipient. This kind of proxy re-encryption

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 31

schemes provides higher privacy guarantee

against proxy servers. Although most

proxy re-encryption schemes use pairing

operations, there exist proxy re-encryption

schemes without pairing [19].

2.3 Integrity Checking Functionality

Another important functionality about

cloud storage is the function of integrity

checking. After a user stores data into the

storage system, he no longer possesses the

data at hand. The user may want to check

whether the data are properly stored in

storage servers. The concept of provable

data possession and the notion of proof of

storage are proposed. Later, public

auditability of stored data is addressed in.

Nevertheless all of them consider the

messages in the clear text form.

3 SCENARIO

We present the scenario of the storage

system, the threat model that we consider

for the confidentiality issue, and a

discussion for a straightforward solution.

3.1 System Model

As shown in Fig. 1, our system model

consists of users, n storage servers SS1;

SS2; . . . ; SSn, and m key servers KS1;

KS2; . . . ; KSm. Storage servers provide

storage services and key servers provide

key management services. They work

independently. Our distributed storage

system consists of four phases: system

setup, data storage, data forwarding, and

data retrieval. These four phases are

described as follows.

In the system setup phase, the system

manager chooses system parameters and

publishes them. Each user A is assigned a

public-secret key pair ðPKA; SKAÞ. User

A distributes his secret key SKA to key

servers such that each

key server KSi holds a key share SKA;i, 1 _

i _ m. The key is shared with a threshold t.

In the data storage phase, user A encrypts

his message M and dispatches it to storage

servers. A message M is decomposed into

k blocks m1; m2; . . . ; mk and has an

identifier ID. User A encrypts each block

mi into a ciphertext Ci and sends it to v

randomly chosen storage servers. Upon

receiving cipher texts from a user, each

storage server linearly combines them with

randomly chosen coefficients into a code

word symbol and stores it. Note that a

storage server may receive less than k

message blocks and we assume that all

storage servers know the value k in

advance.

In the data forwarding phase, user A

forwards his encrypted message with an

identifier ID stored in storage servers to

user B such that B can decrypt the

forwarded message by his secret key. To

do so, A uses his secret key SKA and B’s

public key PKB to compute a re-encryption

key RK
ID

A!B and then sends RK
ID

A!B to all

storage servers. Each storage server uses

the re-encryption key to re-encrypt its code

word symbol for later retrieval requests by

B. The re-encrypted code word symbol is

the combination of cipher texts under B’s

public key. In order to distinguish re-

encrypted code word symbols from intact

ones, we call them original code word

symbols and re-encrypted code word

symbols, respectively.

In the data retrieval phase, user A requests

to retrieve a message from storage servers.

The message is either stored by him or

forwarded to him. User A sends a retrieval

request to key servers. Upon receiving the

retrieval request and executing a proper

authentication process with user A, each

key server KSi requests u randomly chosen

storage servers to get codeword symbols

and does partial decryption on the received

codeword symbols by using the key share

SKA;i. Finally, user A combines the

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 32

partially decrypted codeword symbols to

obtain the original message M.

System recovering. When a storage server

fails, a new one is added. The new storage

server queries k available storage servers,

linearly combines the received code word

symbols as a new one and stores it. The

system is then recovered.

3.2 Threat Model

We consider data confidentiality for both

data storage and data forwarding. In this

threat model, an attacker wants to break

data confidentiality of a target user. To do

so, the attacker colludes with all storage

servers, non target users, and up to ðt _

1Þkey servers. The attacker analyzes

stored messages in storage servers, the

secret keys of non target users, and the

shared keys stored in key servers. Note

that the storage servers store all re-

encryption keys provided by users. The

attacker may try to generate a new re-

encryption key from stored re-encryption

keys. We formally model this attack by the

standard chosen plaintext attack
1
 of the

proxy

1. Systems against chosen ciphertext

attacks are more secure than systems

against the chosen plaintext attack. Here,

we only consider the chosen plaintext

attack because a homomorphic encryption

scheme is not secure against chosen

ciphertext attacks. Consider a

multiplicative homo-morphic encryption

scheme, where DðSK; EðPK; m1Þ _

EðPK; m2 ÞÞ ¼ m1_ m2 for the encryption

function E, the decryption function D, a

pair of public key PK and secret key SK,

an operation _, and two messages m1 and

m2. Given a challenge ciphertext C, where

C ¼ EðPK; m1Þ, the attacker chooses m2,

computes EðPK; m2Þ, and computes C
0
 ¼

C _ EðPK; m2Þ. The attacker queries C
0
 to

the decryption oracle. The response m ¼

m1_ m2 from the decryption oracle reveals

the plaintext m1 to the attacker since m1 ¼

m=m2.Fig. 2. The security game for the

chosen plaintext attack.

re-encryption scheme in a threshold

version, as shown in Fig. 2.

The challenger C provides the system

parameters. After the attacker A chooses a

target user T , the challenger gives him ðt

_ 1Þ key shares of the secret key SKT of

the target user T to model ðt _ 1Þ

compromised key servers. Then, the

attacker can query secret keys of other

users and all re-encryption keys except

those from T to other users. This models

compromised non target users and storage

servers. In the challenge phase, the

attacker chooses two messages M0 and M1

with the identifiers ID0 and ID1,

respectively. The challenger throws a

random coin b and encrypts the message

Mb with T ’s public key PKT . After

getting the ciphertext from the challenger,

the attacker outputs a bit b
0
 for guessing b.

In this game, the attacker wins if and only

if b
0
 ¼ b. The advantage of the attacker is

defined as j1=2 _ Pr½b
0
 ¼ b&j.

A cloud storage system modeled in the

above is secure if no probabilistic

polynomial time attacker wins the game

with a non negligible advantage. A secure

cloud storage system implies that an

unauthorized user or server cannot get the

content of stored messages, and a storage

server cannot generate re-encryption keys

by himself. If a storage server can generate

a re-encryption key from the target user to

another user B, the attacker can win the

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 33

security game by re-encrypting the cipher

text to B and decrypting the re-encrypted

cipher text using the secret key SKB.

Therefore, this model addresses the

security of data storage and data

forwarding.

3.3 A Straightforward Solution

A straightforward solution to supporting

the data forward-ing function in a

distributed storage system is as follows:

when the owner A wants to forward a

message to user B, he downloads the

encrypted message and decrypts it by

using his secret key. He then encrypts the

message by using B’s public key and

uploads the new ciphertext. When B wants

to retrieve the forwarded message from A,

he downloads the ciphertext and decrypts

it by his secret key. The whole data

forwarding process needs three

communication rounds for A’s

downloading and uploading and B’s

downloading. The communication cost is

linear in the length of the forwarded

message. The computation cost is the

decryption and encryption for the owner

A, and the decryption for user B.

Proxy re-encryption schemes can

significantly decrease communication and

computation cost of the owner. In a proxy

re-encryption scheme, the owner sends a

re-encryptionkey to storage servers such

that storage servers perform the re-

encryption operation for him. Thus, the

communication cost of the owner is

independent of the length of forwarded

message and the computation cost of re-

encryption is taken care of by storage

servers. Proxy re-encryption schemes

significantly reduce the overhead of the

data forwarding function in a secure

storage system.

4 CONSTRUCTION OF SECURE

CLOUD STORAGE SYSTEMS

Before presenting our storage system, we

briefly introduce the algebraic setting, the

hardness assumption, an erasure code over

exponents, and our approach.

Bilinear map. Let G1 and G2 be cyclic

multiplicative groups
2
 with a prime order p

and g 2 G1 be a generator. A map e~ : G1_

G1 ! G2 is a bilinear map if it is efficiently

computable and has the properties of

bilinearity and nondegeneracy: for any x; y

2 Zp; e~ðg
x
; g

y
Þ ¼ e~ðg; gÞ

xy
 and e~ðg;

gÞ is not the identity element in G2. Let

Genð1
_
Þ be an algorithm generating ðg;

e;~ G1; G2; pÞ, where _ is the length of p.

Let x 2R X denote that x is randomly

chosen from the set X.

Decisional bilinear Diffie-Hellman

assumption. Thisassumption is that it is

computationally infeasible to distinguish

the distributions (g, g
x
, g

y
, g

z
, e~ðg; gÞ

xyz
)

and (g,g
x
, g

y
, g

z
, e~ðg; gÞ

r
), where x; y; z;

r 2R Zp. Formally, for any probabilistic

polynomial time algorithm A, the

following is negligible (in _):j Pr½Aðg;

g
x
; g

y
; g

z
; QbÞ ¼ b : x; y; z; r 2R Zp;Q0 ¼

e~ðg; gÞ
xyz

; Q1 ¼ e~ðg; gÞ
r
; b 2R f0; 1g&_

1=2j:

Erasure coding over exponents. We

consider that the message domain is the

cyclic multiplicative group G2 described

above. An encoder generates a generator

matrix G ¼ ½gi;j& for 1 _ i _ k; 1 _ j _ n as

follows: for each row, the encoder

randomly selects an entry and randomly

sets a value from Zp to the entry. The

encoder repeats this step v times with

replacement for each row. An entry of a

row can be selected multiple times but

only set to one value. The values of the

rest entries are set to 0. Let the message be

m

;

m

; . . .

; m G
k

. The

encoding

process is to

generate

ð

1 2

kÞ

2
n2

g
1;

j

g
2

;j
g
k;j

for

ðw1; w2; . . .

; wnÞ 2 G2 ,

where wj ¼

m1

m

2

_ _

_

mk

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 34

1 _ j _ n.

The first

step of the

decoding process

is

to

Compute the inverse of a k _ k submatrix

K of G. Let K be

½

g

&

for

1

_

i;

j

i

_

k. Let

K
_1

¼

½

d
i;j&

1

i;j

k

. The final

step of

i;

ji

d

1;

i

d
2

;i
d
k;i

the decoding process is to

compute mi ¼ wj1

w
j

2

_ _

_

wjk

f

o

r

1 _ i _ k. An example is shown in Fig. 3.

User A stores two messages m1 and m2

into four storage servers. When the storage

servers SS1 and SS3 are available and the k

_ k submatrix K is invertible, user A can

decode m1 and m2 from the codeword

symbols w1; w3 and the coefficients ðg1;1;

0Þ; ð0; g2;3Þ, which are stored in the

storage servers SS1 and SS3.

Our approach. We use a threshold proxy

re-encryption scheme with multiplicative

homomorphic property. An encryption

scheme is multiplicative homomorphic if it

Fig. 3. A storage system with random

linear coding over exponents.

4.1 A Secure Cloud Storage System with

Secure Forwarding

As described in Section 3.1, there are four

phases of our storage system.

System setup. The algorithm SetUpð1
_
 Þ

generates the system parameters _. A user

uses KeyGenð_Þ to generate his public

and secret key pair and ShareKeyGenð_Þ

to share his secret key to a set of m key

servers with a threshold t, where k _ t _ m.

The user locally stores the third compo-

nent of his secret key.

. SetUp(1
_
). Run Genð1

_
Þ to obtain

ðg; h; e;~ G1; G2; pÞ, where e~ : G1_ G1 !

G2 is a bilinear map, g and h are generators

of G1, and both G1 and G2 have the prime

order p. Set _ ¼ ðg; h; e;~ G1; G2; p; fÞ,

where f : Zp_ f0; 1g ! Zp is a one-way hash

function.

. KeyGen(_). For a user A, the

algorithm selects a1; a2; a3 2R Zp and sets

PKA ¼ ðg
a1

 ; h
a2

 Þ; SKA ¼ ða1; a2; a3Þ:

. ShareKeyGen(SKA, t, m). This

algorithm shares the secret key SKA of a

user A to a set of m key servers by using

two polynomials fA;1ðzÞ and fA;2ðzÞ of

degree ðt _ 1Þ over the finite field GF(p)

fA;1ðzÞ ¼ a1 þ v1z þ v2z
2
 þ _ _ _ þ

vt_1z
t_1

ðmod pÞ; fA;2ðzÞ ¼ a
_

2
1
 þ v1z þ v2z

2

þ _ _ _ þ vt_1z
t_1

ðmod pÞ;

where v1; v2; . . . ; vt_1 2R Zp. The key share

of the secret key SKA to the key server KSi

is SKA;i ¼

ðfA;1ðiÞ; fA;2ðiÞÞ, where 1 _ i _ m.

Data storage. When user A wants to store a

message of k blocks m1; m2; . . . ; mk with

the identifier ID, he computes the identity

token _ ¼ h
fða3;IDÞ

 and performs the

encryption algorithm Encð_Þ on _ and k

blocks to get k original ciphertexts C1; C2;

. . . ; Ck. An original ciphertext is indi-

cated by a leading bit b ¼ 0. User A sends

each ciphertext Ci to v randomly chosen

storage servers. A storage server receives a

set of original ciphertexts with the same

identity token _ from A. When a ciphertext

Ci is not received, the storage server

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 35

inserts Ci ¼ ð0; 1; _; 1 Þ to the set. The

special format of ð0; 1; _; 1Þ is a mark for

the absence of Ci. The storage server

performs Encodeð_Þ on the set of k

ciphertexts and stores the encoded result

(codeword symbol).

. Enc(PKA; _; m1; m2; . . . ; mk). For

1 _ i _ k, this algo-rithm computes

Ci ¼ ð0; _i; _; _iÞ ¼ ð0; g
ri
 ;_; mie~ðg

a1
 ;

_
ri
 ÞÞ;

where ri 2R Zp; 1 _ i _ k and 0 is the

leading bit indicating an original

ciphertext.

. Encode(C1; C2; . . . ; Ck). For each

ciphertext Ci, the algorithm randomly

selects a coefficient gi. If some ciphertext

Ci is ð0; 1; _; 1Þ, the coefficient gi is set to

0.

Let Ci ¼ ð0; _i; _; _iÞ.

The

encoding

process is to

compute an original codeword symbol

C
0

k

_i
gi

 k _i
gi

 !

C
0
 ¼ 0; i ; _; i

¼1

_

¼1

_

Y_ Y_

!

 k k k

¼ 0; g
P
i¼1

giri
 ; _; i¼1 mi

gi
 e~ðg

a1
 ;

_Þ
P
i¼1

giri

 Y

¼ ð0; g
r0

 ; _; We~ðg; _Þ
a1r0

 Þ;

where W ¼ i
k

¼1

mi
gi

 and r
0
 ¼ i

k
¼1 giri. The

en

-

is C

; g ; g ; . . . ;

g .

P

coded result
Q
ð 0 1 2 kÞ

Data forwarding. User A wants to forward

a message to another user B. He needs the

first component a1 of his secret key. If A

does not possess a1, he queries key servers

for key shares. When at least t key servers

respond, A recovers the first component a1

of the secret key SKA via the

KeyRecoverð_Þ algorithm. Let the

identifier of the message

be ID. User A computes the re-encryption

key RK via

the ReKeyGenð_Þ algorithm and securely

sends the re-

encryption key to each storage server. By

using RK , a

storage server re-encrypts the original

codeword symbol C
0
 with the identifier ID

into a re-encrypted codeword symbol C
00

via the ReEncð_Þ algorithm such that C
00

is decryptable by using B’s secret key. A

re-encrypted codeword symbol is indicated

by the leading bit b ¼ 1. Let the public key

PKB of user B be ðg
b1

 ; h
b2

 Þ.

. Key Recover(SKA;i1 ; SKA;i2 ; . . . ;

SKA;it). Let T ¼ fi1; i2; . . . ; itg.

5 CONCLUSION

In this paper, we consider a cloud storage

system consists of storage servers and key

servers. We integrate a newly proposed

threshold proxy re-encryption scheme and

erasure codes over exponents. The

threshold proxy re-encryption scheme

supports encoding, forwarding, and partial

decryption operations in a distributed way.

To decrypt a message of k blocks that are

encrypted and encoded to n code word

symbols, each key server only has to

partially decrypt two code word symbols

in our system. By using the threshold

proxy re-encryption scheme, we present a

secure cloud storage system that provides

secure data storage and secure data

forwarding functionality in a decentralized

structure. Moreover, each storage server

independently performs encoding and re-

encryption and each key server

independently performs partial decryption.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 36

Our storage system and some newly

proposed content addressable file systems

and storage system are highly compatible.

Our storage servers act as storage nodes in

a content addressable storage system for

storing content addressable blocks. Our

key servers act as access nodes for

providing a front-end layer such as a

traditional file system interface. Further

study on detailed cooperation is required.

REFERENCES

[1] C. Dubnicki, L. Gryz, L. Heldt, M.

Kaczmarczyk, W. Kilian, P. Strzelczak, J.

Szczepkowski, C. Ungureanu, and M.

Welnicki, “Hydrastor: A Scalable

Secondary Storage,” Proc. Seventh Conf.

File and Storage Technologies (FAST), pp.

197-210, 2009.

[2] C. Ungureanu, B. Atkin, A. Aranya, S.

Gokhale, S. Rago, G. Calkowski, C.

Dubnicki, and A. Bohra, “Hydrafs: A

High-Throughput File System for the

Hydrastor Content-Addressable Storage

System,” Proc. Eighth USENIX Conf. File

and Storage Technologies (FAST), p. 17,

2010.

[3] W. Dong, F. Douglis, K. Li, H.

Patterson, S. Reddy, and P. Shilane,

“Tradeoffs in Scalable Data Routing for

Deduplication Clusters,” Proc. Ninth

USENIX Conf. File and Storage

Technologies (FAST), p. 2, 2011.

[4] C. Wang, Q. Wang, K. Ren, and W.

Lou, “Privacy-Preserving Public Auditing

for Data Storage Security in Cloud

Computing,”Proc. IEEE 29th Int’l Conf.

Computer Comm. (INFOCOM), pp. 525-

533, 2010.

