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Abstract : A cloud storage system, 

consisting of a collection of storage 

servers, provides long-term storage 

services over the Internet. Storing data in a 

third party’s cloud system causes serious 

concern over data confidentiality. General 

encryption schemes protect data 

confidentiality, but also limit the 

functionality of the storage system because 

a few operations are supported over 

encrypted data. 

Constructing a secure storage system that 

supports multiple functions is challenging 

when the storage system is distributed and 

has no central authority. We propose a 

threshold proxy re-encryption scheme and 

integrate it with a decentralized erasure 

code such that a secure distributed storage 

system is formulated. The distributed 

storage system not only supports secure 

and robust data storage and retrieval, but 

also lets a user forward his data in the 
storage servers to another user without 
retrieving the data back. The main technical 
contribution is that the proxy re-encryption 
scheme supports encoding operations over 
encrypted messages as well as forwarding 
operations over encoded and encrypted 
messages. Our method fully integrates 
encrypting, encoding, and forwarding. We 
analyze and suggest suitable parameters for 
the number of copies of a message 
dispatched to storage servers and the number 
of storage servers queried by a key server. 
These parameters allow more flexible 
adjustment between the number of storage 
servers and robustness. 

Keywords: Decentralized erasure code, 

proxy re-encryption, threshold cryptography, 

secure storage system. 

 

1. INTRODUCTION 

As high-speed networks and ubiquitous 

Internet access become available in recent 

years, many services are provided on the 

Internet such that users can use them from 

anywhere at any time. For example, the 

email service is probably the most popular 

one. Cloud computing is a concept that 

Treats the resources on the Internet as a 

unified entity, a cloud.  Users just use 

services without being concerned about 

how computation is done and storage is 

managed. In this paper, we focus on  

designing a cloud storage system for 

robustness, confidentiality, and 

functionality. A cloud storage system is 

considered as a large-scale distributed  

storage system that consists of many 

independent storage servers. 

                         Data robustness is a major 

requirement for storage systems. There 

have been many proposals of storing data 

over storage servers. One way to provide 

data robustness is to replicate a message 

such that each storage server stores a copy 

of the message. It is very robust because 

the message can be retrieved as long as 

one storage server survives. Another way 

is to encode a message of k symbols into a 

code word of n symbols by erasure coding. 

To store a message, each of its code word 

symbols is stored in a different storage 
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server. A storage server failure 

corresponds 

to an erasure error of the code word 

symbol. As long as the number of failure 

servers is under the tolerance threshold of 

the erasure code, the message can be 

recovered from the code word symbols 

stored in the available storage servers by 

the decoding process. This provides a 

tradeoff between the storage size and the 

tolerance threshold of failure servers. A 

decentralized erasure code is an erasure 

code that independently computes each 

code word symbol for a message. Thus, 

the encoding process for a message can be 

split into n parallel tasks of generating 

code word symbols. A decentralized 

erasure code is suitable for use in a 

distributed storage system. After the 

message symbols are sent to storage 

servers, each storage server independently 

computes a code-word symbol for the 

received message symbols and stores it. 

This finishes the encoding and storing 

process. The recovery process is the same. 

 

Storing data in a third party’s cloud system 

causes serious concern on data 

confidentiality. In order to provide strong 

confidentiality for messages in storage 

servers, a user can encrypt messages by a 

cryptographic method before applying an 

erasure code method to encode and store 

messages. When he wants to use a 

message, he needs to retrieve the code 

word symbols from storage servers, 

decode them, and then decrypt them by 

using cryptographic keys. There are three 

problems in the above straightforward 

integration of encryption and encoding. 

First, the user has to do most computation 

and the communication traffic between the 

user and storage servers is high. Second, 

the user has to manage his cryptographic 

keys. If the user’s device of storing the 

keys is lost or compromised, the security is 

broken. Finally, besides data storing and 

retrieving, it is hard for storage servers to 

directly support other functions. For 

example, storage servers cannot directly 

forward a user’s messages to another one. 

The owner of messages has to retrieve, 

decode, decrypt and then forward them to 

another user. 

 

2 RELATED WORKS 

 

We briefly review distributed storage 

systems, proxy re-encryption schemes, and 

integrity checking mechanisms. 

 

2.1 Distributed Storage Systems  

 

At the early years, the Network-Attached 

Storage (NAS) and the Network File 

System (NFS) provide extra Storage 

devices over the network such that a user 

can access the storage devices via network 

connection. Afterward, many 

improvements on scalability, robustness, 

efficiency, and security were proposed. 

 

A decentralized architecture for storage 

systems offers good scalability, because a 

storage server can join or leave without 

control of a central authority. To provide 

robust-ness against server failures, a 

simple method is to make replicas of each 

message and store them in different 

servers. However, this method is 

expensive as z replicas result in z times of 

expansion. 

 

One way to reduce the expansion rate is to 

use erasure codes to encode messages. A 

message is encoded as a code word, which 

is a vector of symbols, and each storage 

server stores a code word symbol. A 

storage server failure is modeled as an 

erasure error of the stored code word 

symbol. Random linear codes support 

distributed encoding, that is, each code 

word symbol is independently computed. 

To store a message of k blocks, each 

storage server linearly combines the blocks 

with randomly chosen coefficients and 

stores the code word symbol and 

coefficients. To retrieve the message, a 
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user queries k storage servers for the 

stored code word symbols and coefficients 

and solves the linear system. Dimakis et al. 

considered the case that n ¼ ak for a fixed 

constant a. They showed that distributing 

each block of a message to v randomly 

chosen storage servers is enough to have a 

probability 1 _ k=p _ oð1Þ of a successful 

data retrieval, where v ¼ b ln k, b > 5a, 

and p is the order of the used group. The 

sparsity parameter v ¼ b ln k is the 

number of storage servers which a block is 

sent to. The larger v is, the communication 

cost is higher and the successful retrieval 

probability is higher. The system has a 

light data confidentiality because an 

attacker can compromise k storage servers 

to get the message. 

 

Lin and Tzeng addressed robustness and 

confidenti-ality issues by presenting a 

secure decentralized erasure code for the 

networked storage system. In addition to 

storage servers, their system consists of 

key servers, which hold cryptographic key 

shares and work in a distributed way. In 

their system, stored messages are 

encrypted and then encoded. To retrieve a 

message, key servers query storage servers 

for the user. As long as the number of 

available key servers is over a threshold t, 

the message can be successfully retrieved 

with an overwhelming probability. 

 

One of their results shows that when 

there are n storage  

 p p  

servers with n 

¼ ak 

k, the parameter 

v is b 

k ln k 

with  

b > 

5a , and each 

key 

ffiffiffiserver 

queries 2 storage 

servers 

for  

 ffiffiffi  

each retrieval request, the probability of a 

successful retrieval is at least 1 _ k=p _ 

oð1Þ. 

 

2.2 Proxy Re-Encryption Schemes  

 

Proxy re-encryption schemes are proposed 

by Mambo and Okamoto and Blaze et al. 

In a proxy re-encryption scheme, a proxy 

server can transfer a ciphertext under a 

public key PKA to a new one under 

another public key PKB by using the re-

encryption key RKA!B. The server does not 

know the plaintext during transformation. 

Ateniese et al. proposed some proxy re-

encryption schemes and applied them to 

the sharing function of secure storage 

systems. In their work, messages are first 

encrypted by the owner and then stored in 

a storage server.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A general system model of our 

work. 

 

When a user wants to share his messages, 

he sends a re-encryption key to the storage 

server. The storage server re-encrypts the 

encrypted messages for the authorized 

user. Thus, their system has data 

confidentiality and supports the data 

forwarding function. Our work further 

integrates encryption, re-encryption, and 

encoding such that storage robust-ness is 

strengthened. 

 

Type-based proxy re-encryption schemes 

proposed by Tang provide a better 

granularity on the granted right of a re-

encryption key. A user can decide which 

type of messages and with whom he wants 

to share in this kind of proxy re-encryption 

schemes. Key-private proxy re-encryption 

schemes are proposed by Ateniese et al. In 

a key-private proxy re-encryption scheme, 

given a re-encryption key, a proxy server 

cannot determine the identity of the 

recipient. This kind of proxy re-encryption 
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schemes provides higher privacy guarantee 

against proxy servers. Although most 

proxy re-encryption schemes use pairing 

operations, there exist proxy re-encryption 

schemes without pairing [19]. 

 

2.3 Integrity Checking Functionality  

 

Another important functionality about 

cloud storage is the function of integrity 

checking. After a user stores data into the 

storage system, he no longer possesses the 

data at hand. The user may want to check 

whether the data are properly stored in 

storage servers. The concept of provable 

data possession  and the notion of proof of 

storage  are proposed. Later, public 

auditability of stored data is addressed in. 

Nevertheless all of them consider the 

messages in the clear text form. 

3 SCENARIO 

 

We present the scenario of the storage 

system, the threat model that we consider 

for the confidentiality issue, and a 

discussion for a straightforward solution. 

 

3.1 System Model  

 

As shown in Fig. 1, our system model 

consists of users, n storage servers SS1; 

SS2; . . . ; SSn, and m key servers KS1; 

KS2; . . . ; KSm. Storage servers provide 

storage services and key servers provide 

key management services. They work 

independently. Our distributed storage 

system consists of four phases: system 

setup, data storage, data forwarding, and 

data retrieval. These four phases are 

described as follows. 

 

In the system setup phase, the system 

manager chooses system parameters and 

publishes them. Each user A is assigned a 

public-secret key pair ðPKA; SKAÞ. User 

A distributes his secret key SKA to key 

servers such that each 

key server KSi holds a key share SKA;i, 1 _ 

i _ m. The key is shared with a threshold t. 

 

In the data storage phase, user A encrypts 

his message M and dispatches it to storage 

servers. A message M is decomposed into 

k blocks m1; m2; . . . ; mk and has an 

identifier ID. User A encrypts each block 

mi into a ciphertext Ci and sends it to v 

randomly chosen storage servers. Upon 

receiving cipher texts from a user, each 

storage server linearly combines them with 

randomly chosen coefficients into a code 

word symbol and stores it. Note that a 

storage server may receive less than k 

message blocks and we assume that all 

storage servers know the value k in 

advance. 

 

In the data forwarding phase, user A 

forwards his encrypted message with an 

identifier ID stored in storage servers to 

user B such that B can decrypt the 

forwarded message by his secret key. To 

do so, A uses his secret key SKA and B’s 

public key PKB to compute a re-encryption 

key RK
ID

A!B and then sends RK
ID

A!B to all 

storage servers. Each storage server uses 

the re-encryption key to re-encrypt its code 

word symbol for later retrieval requests by 

B. The re-encrypted code word symbol is 

the combination of cipher texts under B’s 

public key. In order to distinguish re-

encrypted code word symbols from intact 

ones, we call them original code word 

symbols and re-encrypted code word 

symbols, respectively. 

 

In the data retrieval phase, user A requests 

to retrieve a message from storage servers. 

The message is either stored by him or 

forwarded to him. User A sends a retrieval 

request to key servers. Upon receiving the 

retrieval request and executing a proper 

authentication process with user A, each 

key server KSi requests u randomly chosen 

storage servers to get codeword symbols 

and does partial decryption on the received 

codeword symbols by using the key share 

SKA;i. Finally, user A combines the 
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partially decrypted codeword symbols to 

obtain the original message M. 

 

System recovering. When a storage server 

fails, a new one is added. The new storage 

server queries k available storage servers, 

linearly combines the received code word 

symbols as a new one and stores it. The 

system is then recovered. 

3.2 Threat Model  

 

 

 

 

 

 

 

 

 

 

 

We consider data confidentiality for both 

data storage and data forwarding. In this 

threat model, an attacker wants to break 

data confidentiality of a target user. To do 

so, the attacker colludes with all storage 

servers, non target users, and up to ðt _ 

1Þkey servers. The attacker analyzes 

stored messages in storage servers, the 

secret keys of non  target users, and the 

shared keys stored in key servers. Note 

that the storage servers store all re-

encryption keys provided by users. The 

attacker may try to generate a new re-

encryption key from stored re-encryption 

keys. We formally model this attack by the 

standard chosen plaintext attack
1
 of the 

proxy 
 
1. Systems against chosen ciphertext 

attacks are more secure than systems 

against the chosen plaintext attack. Here, 

we only consider the chosen plaintext 

attack because a homomorphic encryption 

scheme is not secure against chosen 

ciphertext attacks. Consider a 

multiplicative homo-morphic encryption 

scheme, where DðSK; EðPK; m1Þ _ 

EðPK; m2 ÞÞ ¼ m1_ m2 for the encryption 

function E, the decryption function D, a 

pair of public key PK and secret key SK, 

an operation _, and two messages m1 and 

m2. Given a challenge ciphertext C, where 

C ¼ EðPK; m1Þ, the attacker chooses m2, 

computes EðPK; m2Þ, and computes C
0
 ¼ 

C _ EðPK; m2Þ. The attacker queries C
0
 to 

the decryption oracle. The response m ¼ 

m1_ m2 from the decryption oracle reveals 

the plaintext m1 to the attacker since m1 ¼ 

m=m2.Fig. 2. The security game for the 

chosen plaintext attack. 

 

re-encryption scheme in a threshold 

version, as shown in Fig. 2. 

 

The challenger C provides the system 

parameters. After the attacker A chooses a 

target user T , the challenger gives him ðt 

_ 1Þ key shares of the secret key SKT of 

the target user T to model ðt _ 1Þ 

compromised key servers. Then, the 

attacker can query secret keys of other 

users and all re-encryption keys except 

those from T to other users. This models 

compromised non target users and storage 

servers. In the challenge phase, the 

attacker chooses two messages M0 and M1 

with the identifiers ID0 and ID1, 

respectively. The challenger throws a 

random coin b and encrypts the message 

Mb with T ’s public key PKT . After 

getting the ciphertext from the challenger, 

the attacker outputs a bit b
0
 for guessing b. 

In this game, the attacker wins if and only 

if b
0
 ¼ b. The advantage of the attacker is 

defined as j1=2 _ Pr½b
0
 ¼ b&j. 

 

A cloud storage system modeled in the 

above is secure if no probabilistic 

polynomial time attacker wins the game 

with a non negligible advantage. A secure 

cloud storage system implies that an 

unauthorized user or server cannot get the 

content of stored messages, and a storage 

server cannot generate re-encryption keys 

by himself. If a storage server can generate 

a re-encryption key from the target user to 

another user B, the attacker can win the 
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security game by re-encrypting the cipher 

text to B and decrypting the re-encrypted 

cipher text using the secret key SKB. 

Therefore, this model addresses the 

security of data storage and data 

forwarding. 

 

3.3 A Straightforward Solution  

 

A straightforward solution to supporting 

the data forward-ing function in a 

distributed storage system is as follows: 

when the owner A wants to forward a 

message to user B, he downloads the 

encrypted message and decrypts it by 

using his secret key. He then encrypts the 

message by using B’s public key and 

uploads the new ciphertext. When B wants 

to retrieve the forwarded message from A, 

he downloads the ciphertext and decrypts 

it by his secret key. The whole data 

forwarding process needs three 

communication rounds for A’s 

downloading and uploading and B’s 

downloading. The communication cost is 

linear in the length of the forwarded 

message. The computation cost is the 

decryption and encryption for the owner 

A, and the decryption for user B. 

 

 

Proxy re-encryption schemes can 

significantly decrease communication and 

computation cost of the owner. In a proxy 

re-encryption scheme, the owner sends a 

re-encryptionkey to storage servers such 

that storage servers perform the re-

encryption operation for him. Thus, the 

communication cost of the owner is 

independent of the length of forwarded 

message and the computation cost of re-

encryption is taken care of by storage 

servers. Proxy re-encryption schemes 

significantly reduce the overhead of the 

data forwarding function in a secure 

storage system. 

 

4 CONSTRUCTION OF SECURE 

CLOUD STORAGE SYSTEMS  

 

Before presenting our storage system, we 

briefly introduce the algebraic setting, the 

hardness assumption, an erasure code over 

exponents, and our approach. 

Bilinear map. Let G1 and G2 be cyclic 

multiplicative groups
2
 with a prime order p 

and g 2 G1 be a generator. A map e~ : G1_ 

G1 ! G2 is a bilinear map if it is efficiently 

computable and has the properties of 

bilinearity and nondegeneracy: for any x; y 

2 Zp; e~ðg
x
; g

y
Þ ¼ e~ðg; gÞ

xy
 and e~ðg; 

gÞ is not the identity element in G2. Let 

Genð1
_
Þ be an algorithm generating ðg; 

e;~ G1; G2; pÞ, where _ is the length of p. 

Let x 2R X denote that x is randomly 

chosen from the set X. 

 

Decisional bilinear Diffie-Hellman 

assumption. Thisassumption is that it is 

computationally infeasible to distinguish 

the distributions (g, g
x
, g

y
, g

z
, e~ðg; gÞ

xyz
) 

and (g,g
x
, g

y
, g

z
, e~ðg; gÞ

r
), where x; y; z; 

r 2R Zp. Formally, for any probabilistic 

polynomial time algorithm A, the 

following is negligible (in _):j Pr½Aðg; 

g
x
; g

y
; g

z
; QbÞ ¼ b : x; y; z; r 2R Zp;Q0 ¼ 

e~ðg; gÞ
xyz

; Q1 ¼ e~ðg; gÞ
r
; b 2R f0; 1g&_ 

1=2j: 

Erasure coding over exponents. We 

consider that the message domain is the 

cyclic multiplicative group G2 described 

above. An encoder generates a generator 

matrix G ¼ ½gi;j& for 1 _ i _ k; 1 _ j _ n as 

follows: for each row, the encoder 

randomly selects an entry and randomly 

sets a value from Zp to the entry. The 

encoder repeats this step v times with 

replacement for each row. An entry of a 

row can be selected multiple times but 

only set to one value. The values of the 

rest entries are set to 0. Let the message be 

m 

; 

m 

; . . . 

; m G
k
 

. The 

encoding 

process is to 

generate  

ð  

1 2  

kÞ 

2
n2 

g
1;

j 

g
2

;j 
g
k;j 

for 

 

ðw1; w2; . . . 

; wnÞ 2 G2 , 

where  wj ¼ 

m1 

m

2 

_ _ 

_ 

mk  
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1 _ j _ n. 

The first 

step of the 

decoding process 

is 

to  

Compute the inverse of a k _ k submatrix 

K of G. Let K be 

½ 

g 

& 

for 

1 

_ 

i; 

j 

i 

_ 

k. Let 

K
_1

 

¼ 

½ 

d 
i;j&

1

_i;j_

k 

. The final 

step of  

i;

ji     

d

1;

i 

d
2

;i 
d
k;i   

the decoding process is to 

compute mi ¼ wj1 

w
j

2 

_ _ 

_ 

wjk 

f

o

r  

1 _ i _ k. An example is shown in Fig. 3. 

User A stores two messages m1 and m2 

into four storage servers. When the storage 

servers SS1 and SS3 are available and the k 

_ k submatrix K is invertible, user A can 

decode m1 and m2 from the codeword 

symbols w1; w3 and the coefficients ðg1;1; 

0Þ; ð0; g2;3Þ, which are stored in the 

storage servers SS1 and SS3. 

 

Our approach. We use a threshold proxy 

re-encryption scheme with multiplicative 

homomorphic property. An encryption 

scheme is multiplicative homomorphic if it 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. A storage system with random 

linear coding over exponents. 

 

4.1 A Secure Cloud Storage System with 

Secure Forwarding  

 

As described in Section 3.1, there are four 

phases of our storage system. 

 

System setup. The algorithm SetUpð1
_
 Þ 

generates the system parameters _. A user 

uses KeyGenð_Þ to generate his public 

and secret key pair and ShareKeyGenð_Þ 

to share his secret key to a set of m key 

servers with a threshold t, where k _ t _ m. 

The user locally stores the third compo-

nent of his secret key. 

 

. SetUp(1
_
). Run Genð1

_
Þ to obtain 

ðg; h; e;~ G1; G2; pÞ, where e~ : G1_ G1 ! 

G2 is a bilinear map, g and h are generators 

of G1, and both G1 and G2 have the prime 

order p. Set _ ¼ ðg; h; e;~ G1; G2; p; fÞ, 

where f : Zp_ f0; 1g ! Zp is a one-way hash 

function. 

 

. KeyGen(_). For a user A, the 

algorithm selects a1; a2; a3 2R Zp and sets 

 

PKA ¼ ðg
a1

 ; h
a2

 Þ; SKA ¼ ða1; a2; a3Þ: 

 

. ShareKeyGen(SKA, t, m). This 

algorithm shares the secret key SKA of a 

user A to a set of m key servers by using 

two polynomials fA;1ðzÞ and fA;2ðzÞ of 

degree ðt _ 1Þ over the finite field GF(p) 

fA;1ðzÞ ¼ a1 þ v1z þ v2z
2
 þ _ _ _ þ 

vt_1z
t_1

ðmod pÞ; fA;2ðzÞ ¼ a
_

2
1
 þ v1z þ v2z

2
 

þ _ _ _ þ vt_1z
t_1

ðmod pÞ; 

 

where v1; v2; . . . ; vt_1 2R Zp. The key share 

of the secret key SKA to the key server KSi 

is SKA;i ¼ 

ðfA;1ðiÞ; fA;2ðiÞÞ, where 1 _ i _ m. 

 

Data storage. When user A wants to store a 

message of k blocks m1; m2; . . . ; mk with 

the identifier ID, he computes the identity 

token _ ¼ h
fða3;IDÞ

 and performs the 

encryption algorithm Encð_Þ on _ and k 

blocks to get k original ciphertexts C1; C2; 

. . . ; Ck. An original ciphertext is indi-

cated by a leading bit b ¼ 0. User A sends 

each ciphertext Ci to v randomly chosen 

storage servers. A storage server receives a 

set of original ciphertexts with the same 

identity token _ from A. When a ciphertext 

Ci is not received, the storage server 
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inserts Ci ¼ ð0; 1; _; 1 Þ to the set. The 

special format of ð0; 1; _; 1Þ is a mark for 

the absence of Ci. The storage server 

performs Encodeð_Þ on the set of k 

ciphertexts and stores the encoded result 

(codeword symbol). 

 

. Enc(PKA; _; m1; m2; . . . ; mk). For 

1 _ i _ k, this algo-rithm computes 

 

Ci ¼ ð0; _i; _; _iÞ ¼ ð0; g
ri
 ;_; mie~ðg

a1
 ; 

_
ri
 ÞÞ; 

 

where ri 2R Zp; 1 _ i _ k and 0 is the 

leading bit indicating an original 

ciphertext. 

 

. Encode(C1; C2; . . . ; Ck). For each 

ciphertext Ci, the algorithm randomly 

selects a coefficient gi. If some ciphertext 

Ci is ð0; 1; _; 1Þ, the coefficient gi is set to 

0. 

Let Ci ¼ ð0; _i; _; _iÞ. 

The 

encoding 

process is to  

compute an original codeword symbol 

C
0
    

k 

_i
gi

 

 k _i
gi

 ! 

   

C
0
 ¼  0; i ; _; i    

¼1   

_ 

¼1  

_ 

     

Y_  Y_   

! 

  

 k   k    k   

¼  0; g
P
i¼1 

giri
 ; _; i¼1 mi

gi
 e~ðg

a1
 ; 

_Þ
P
i¼1 

giri
   

    Y        

¼ ð0; g
r0

 ; _; We~ðg; _Þ
a1r0

 Þ;       

where  W ¼  i
k

¼1 

mi
gi

 and r
0
 ¼ i

k
¼1 giri.  The 

en

-  

is C 

; g ; g ; . . . ; 

g . 

P 

   

coded result 
Q
ð 0  1 2 kÞ     

Data forwarding. User A wants to forward 

a message to another user B. He needs the 

first component a1 of his secret key. If A 

does not possess a1, he queries key servers 

for key shares. When at least t key servers 

respond, A recovers the first component a1 

of the secret key SKA via the 

KeyRecoverð_Þ algorithm. Let the 

identifier of the message 

 

be ID. User A computes the re-encryption 

key RK via 

 

the ReKeyGenð_Þ algorithm and securely 

sends the re- 

 

encryption key to each storage server. By 

using RK    , a 

 

storage server re-encrypts the original 

codeword symbol C
0
 with the identifier ID 

into a re-encrypted codeword symbol C
00

 

via the ReEncð_Þ algorithm such that C
00

 

is decryptable by using B’s secret key. A 

re-encrypted codeword symbol is indicated 

by the leading bit b ¼ 1. Let the public key 

PKB of user B be ðg
b1

 ; h
b2

 Þ. 

 

. Key Recover(SKA;i1 ; SKA;i2 ; . . . ; 

SKA;it ). Let T ¼ fi1; i2; . . . ; itg.  

 

 

5 CONCLUSION 

 

In this paper, we consider a cloud storage 

system consists of storage servers and key 

servers. We integrate a newly proposed 

threshold proxy re-encryption scheme and 

erasure codes over exponents. The 

threshold proxy re-encryption scheme 

supports encoding, forwarding, and partial 

decryption operations in a distributed way. 

To decrypt a message of k blocks that are 

encrypted and encoded to n code word 

symbols, each key server only has to 

partially decrypt two code word symbols 

in our system. By using the threshold 

proxy re-encryption scheme, we present a 

secure cloud storage system that provides 

secure data storage and secure data 

forwarding functionality in a decentralized 

structure. Moreover, each storage server 

independently performs encoding and re-

encryption and each key server 

independently performs partial decryption. 
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Our storage system and some newly 

proposed content addressable file systems 

and storage system are highly compatible. 

Our storage servers act as storage nodes in 

a content addressable storage system for 

storing content addressable blocks. Our 

key servers act as access nodes for 

providing a front-end layer such as a 

traditional file system interface. Further 

study on detailed cooperation is required. 
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