
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 1

Change Requirement Traceability based Impact Analysis

Methodology to evaluate Object-Oriented Software

Systems

Sunil T D
1

1
Dept. of Electronics & Communication Engg.,

Sri Siddhartha Institute of Technology

Tumkur, Karnataka, India
1
sunil.tumkur@gmail.com

Dr M.Z.Kurian
2

2
Dept. of Electronics & Communication Engg.,

Sri Siddhartha Institute of Technology

Tumkur, Karnataka, India
2
mzkurianvc@yahoo.com

ABSTRACT

It is a well known fact that software maintenance plays a

major role and finds importance in software development life

cycle. As object-oriented programming has become the

standard, it is very important to understand the problems of

maintaining object-oriented software systems. This paper

aims at evaluating object-oriented software system through

change requirement traceability – based impact analysis

methodology. The major issues have been related to change

impact algorithms and inheritance of functionality.

Keywords

Change Requirement Traceability, Impact Analysis, Object-

Oriented Software Systems, Software Maintenance, Change

Impact algorithms, inheritance of functionality.

1. INTRODUCTION

There are several standards for traceability, such as

ISO15504 and CMMI, Over the past decades, several

techniques were developed for tracing requirements. Most of

the traditional techniques like Trace-based Impact Analysis

Methodology (TIAM), which is based on utilizing the trace

information and Work Product Model (WoRM) , which is to

define requirement change impact metric for determining

severity in change requirements. The above methodology has

predictive value for finding classes of similar changes. TIAM

which is intended for planning rather than ensuring that

changes are thoroughly implemented. TIAM potentially

could be used to evaluate the risk of volatile requirements. In

case of design changes, there are cognitive consequences of

the object oriented approach. Novice designers have been

found to have problems with class creation and articulating

the declarative and procedural aspects of the solution.

Accordingly, here it is to introduce traceability patterns or

methods as a solution to requirement-component that can be

applied to both traditional and modern development

processes. This approach has achieved as a result of the

conformance of the structure of the source code to the

traceability patterns or methods. In the software life cycle,

software undergoes changes at all stages. A software product

is successful if a software changes are identified or managed

from all the phases of software life cycle, like requirement

specification phase, design phase, implementation phase and
maintenance phase.

To obtain a software product it should be clear to have a

well established threshold and it must get higher and higher as

development proceeds or no product ever appears. Software

maintenance consumes approximately forty percent of the

software expenditure, since it is a non-trivial phase in software

development lifecycle capturing traceability link between

code and element in artifacts can be helpful in many tasks.

Program comprehension, maintenance, requirement tracing,

impact analysis and reuse of existing software. Many number

of traceability patterns or methods were introduced to trace

back elements from source code in reverse engineering.

Traceability matrix, keywords, aspect weaving, information

retrieval, scenario-based, event based, process centered,

design pattern, goal centric and few examples of traceability

methods. The demand to reengineer legacy system has

increased significantly with the shift toward web-based user

interface. The traceability patterns or methods are used for

many reasons, such as managing evolutionary software

changes, impact analysis, software architecture. The object-

oriented paradigms such as classes and its relationship namely

association, aggregations, dependencies, multiplicity have

been conducted by many researcher. The objective of this

paper is to create and provide round-trip engineering
capability during traceability process.

Organisation: The literature survey about the related topic is

dealt in section 2. Section 3 deals with the types of

Traceability models. Impact analysis based on Change

requirement traceability is discussed in section 4. The research

results are presented in section 5. The paper is concluded
mentioning the conclusive remarks in section 6.

2. LITERATURE SURVEY

There are a number of phases in the life of a software

product. The waterfall model, as described by Ghezzi et al.,

[1], has five major phases. They are requirements analysis

and specifications, coding and module testing, integration

and system testing and delivery and maintenance. This

research is concerned only with the final aspect of the final

phase, maintenance. The maintenance phase is the longest

phase of the life cycle. Maintaining software becomes more

difficult as time progresses and the system evolves. Chandra

Shrivastava et al., [2] stated that the algorithms calculate the

transitive closure of each of the potentially effected classes

http://www.ijcrd.com/
mailto:sunil.tumkur@gmail.com
mailto:mzkurianvc@yahoo.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 2

and methods. It will be possible to greatly improve upon the

information provided by the algorithms in recognition of

low-level design patterns, effects of data type changes, and

effects of addition and deletion of classes can be drawn from

the LLSA model of an object-oriented system.

Chen. X., Tsai et al., [3] presented an integrated environment

for C++ program maintenance which describes three new

dependence graphs specific to object-oriented software

systems: message, class and declaration dependence in a

model called C++ DG. Additionally, several new slicing

techniques are presented. The use of the new dependencies

and slicing on code maintenance is described. The

dependencies are described, specifically as to the ripple effect

and regression testing. The application of the discovered

dependencies and program slicing leads to recursive analysis

of the ripple effect caused by code modification. As the

effects are located, classes and methods affected can be

“marked” for testing or re-execution in the testing phase.

Li.,L et al., [4] explained four algorithms that measure the

effect of proposed changes to object-oriented systems. The

ripple effect is calculated by application of algorithms that

1. calculate the change effects inside of a class

2. calculate the change effects among clients

3. calculate the change effects among subclasses

4. measure the total effect by driving the algorithms

in 1,2 and 3

The author also presented the details of how different types

of changes affect the system. Changes are broadly

categorized as method or member change, and then refined to

more detail such as adding a member or changing an

attribute. Gallangher, K [5] described about program slicing

to select a point in an ANSI C program for observation. The

method looks at program variables and essentially models

dependencies that exist among variables via assignment

statements and parameter passing. The method is a

visualization of the data collected by the Surgeon’s Assistant

and is called the Decomposition Slice Display System.

According to Hutchins et al., [6] Visual Impact Analysis has

improved the recognition of further dependencies such as

interference. Bohner.S.A [7] presented that software

engineering practice evolves to respond to demands for

distributed applications on heterogeneous platforms; software

change is increasingly influenced by middleware and

components. Interoperability dependency relationships now

point to more relevant impacts of software change and

necessarily drive the analysis. Software changes to software

systems that incorporate middleware components like Web

services expose these systems and the organizations they

serve to unforeseen ripple effects that frequently result in

failures. Current software change impact analysis models

have not adequately addressed this trend. Moreover, as

software systems grow in size and complexity, the

dependency webs of information extend beyond most

software engineers’ ability to comprehend them. This paper

examines preliminary research for extending current software

change impact analysis to incorporate interoperability

dependency relationships for addressing distributed

applications and explores three dimensional (3D)

visualization techniques for more effective navigation of

software changes. Pressman [8] explained that as software

system becomes larger and more complex, numerous

corrections, extensions and adaptations tend to be more

chaotic and unmanageable. The traditional way of addressing

the maintenance task individually is no longer practical. It

needs a special management system, called the Software

Configuration Management (SCM) that covers the

procedures, rules, policies and methods to handle the

software evolution (IEEE, 1998b). SCM has been identified

as a major part of a well defined software development and

maintenance task. SCM deals with controlling the evolution

of complex software systems that supports version controls

and administrative aspects such as to handle change requests,

and to perform changes in a controlled manner by

introducing well-defined processes. Suhaimi Bin Ibrahim [9]

illustrates that most of the Computer Aided Software

Engineering (CASE) tools and applications focuses on the

high level software and yet are directly applicable to software

development rather than maintenance. While the low level

software, e.g. code is given less priority and very often left to

users to decide. This makes the software change impact

analysis extremely difficult to manage at both levels.

Secondly, there exists some research works on change impact

analysis but the majority confine their solution at the limited

space i.e. code, although more evolvable software can be

achieved at the meta model level. No proper visibility is

being made by the ripple effects of a proposed change across

different levels of work product. If this can be achieved, a

more concrete estimation can be predicted that can support

change decision, cost estimation and schedule plan.

M.Z.Kurian et al., [10] explained a comparative software

maintenance methodology to assist in Object Oriented

systems was carried out with main intention regarding to

impact analysis and ripple effect to retesting of affected and

changed components. This reduces the cost of testing and

assists in identifying change impact in object-oriented

maintenance. Since, it does not emphasize on the change

requirement analysis and tracing object oriented software

system it is to look forward with other methods. Ali R.

Sharafat et al., [11] proposed an estimation of change-

proneness of parts of a software system is an active topic in

the area of software engineering. Such estimates can be used

to predict changes to different classes of a system from one

release to the next. They can also be used to estimate and

possibly reduce the effort required during the development

and maintenance phase by balancing the amount of

developers’ time assigned to each part of a software system.

This is a novel approach to predict changes in an object-

oriented software system. The rationale behind this approach

is that in a well-designed software system, feature

enhancement or corrective maintenance should affect a

limited amount of existing code. The goal is to quantify this

aspect of quality by assessing the probability that each class

will change in a future generation. Peter Zielczynski [12]

explained an approach which is applied to software writing in

an object-oriented language to trace object oriented code into

functional requirements. Here, it is addressed the problem of

establishing traceability links between the free text

documentation associated with development and maintenance

cycle of a software system and its code. Further, vector space

models to compare different model and to assess the relative

influence of affecting factors are not considered.

In this paper, based on the requirement management to

maintenance is considered so that change requirement

traceability analysis is done on the requirement as well as

object-oriented software systems and a round-trip traceability

analysis is performed.

3. TRACEABILITY MODELS

Requirement traceability refers to the ability to describe

and follow the life of a requirement, in both a forwards and

backward direction. Forward traceability is the ability to trace

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 3

a requirement to components of a design or implementation.

Backward traceability is the ability to trace a requirement to

its source that is, to a person, institution, law, argument etc.

Inter-requirements traceability refers to the relationships

between requirements. Inter-requirement traceability is

important for requirement analysis and to deal with

requirements change and evolution Francisco A et al., [13].

Extra-requirements traceability refers to the relationships
between requirements and other artifacts.

4.CHANGE REQUIREMENT TRACEABILITY

BASED IMPACT ANALYSIS

It is the result of the elicitation process Gotel O.C.Z et al.,

[14]. The tracing of a requirement can be done in either way,

to get information related to the process of elicitation, prior to

its inclusion in the requirements specification or to get

information related to its use, after the requirement has been

elicited and included in the requirement. It has pre-

requirements specification traceability and post-requirement

traceability specification traceability. Pre- requirement

traceability refers to those aspects of a requirements life prior

to its inclusion in the requirement specification. Post RS-

traceability refers to those aspects of a requirements life that

result from inclusion in the requirement specification. Pre

RS-traceability is used, when there is a change to a

requirement and when to get the requirements source or

people supporting it to validate change. Post RS traceability

is used to get the design module to which a requirement was

allocated or the test procedures created to verify the
requirements.

Change Requirement Traceability Based Impact Analysis

is a Non-functional tracing and Informal tracing that is, in

functional tracing, those related to well establish mapping

between objects model types and mapping types which allow

analysis models, design models, process models,

organizational models. The Non-functional tracing is related

to the tracing of non-functional aspects of software

development. They are usually related to quality aspects and

results from relationships to non-tangible concepts. The traces

that related requirements to goals, objectives, intensities and

decisions are example of non-functional tracing. Non-

function tracing are classified into four categories like reason,

context, decision and technical.

The tracing of non-functional aspects of software

development can be automatically performed only using a

representation of that aspect. Therefore, here it is to use some

model to functionally capture the non-functional aspects we

want to trace, it may use an organizational model to relate

policies, goal and roles to requirements, or it may be used

process model to relate requirements to activities and

resources. It is also an informal need for trace definition. The

definition of traces and traceable objects should promote their

uniform understanding. Differences and interpretation are the

causes of errors, and in the more serious cases once may end

up tracing what did not happen. To account for non-functional

traces, the definition of traceable objects should allow the use

of hyper-media objects like videos, recording and images

together with mechanism for inspecting these kinds of objects.

The relationship between recorded real world observations

and parts of conceptual model is called extended traceability

Haumer P et al., [15] Smith t et al., [16] Yu W.D. [17].

Sarah Maadawy et al., [18] presents a methodology to

measure software complexity for changes. It studies attributes

that affect complexity of change and the relation between

requirements and each other to finally find a complexity

measure the will serve in finding a precise estimate for the

change. However, it did not discuss the object-oriented
analysis and design aspects.

In this paper, the change requirement traceability based

impact analysis methodology has been discussed, which is for

a non-functional and informal and extended traceability, also

object-oriented analysis and design aspects are discussed. This
paper discusses the following phase’s i.e.

Phase One

A. Validating the new requirements from any of the

stake holders.

B. Classification of requirement whether functional or

non-functional requirement

C. Traceability matrix can help tracing the

requirement

D. Review of the Requirements

E. Requirement Evaluation

F. Requirement Documentation

G. Acceptance Testing
Phase Two

A. Stability: Unstable Requirements

B. Completeness: Incomplete Requirements

C. Clarity: Unclear Requirements

D. Validity: Invalid requirements

E. Feasibility: Infeasible requirements

F. Precedent: Unprecedented Requirements

Stability:

This represents the system vulnerability to change. It has

been noticed that software maintainability degrades as

changes are made to it which increases complexity of the

software, system stability will be calculated as in

S(#NORS + #NOCNR + #NOCUR + #NOCDR) / (#NORS)

Where S= Stability and

NORS = No. of original requirement in the
system

NOCNR=No. of cumulative number of
requirement

NOCUR = No. of cumulative number number
of requests updated in the system

NOCDR=No. of cumulative number of request
deleted from the system.

Completeness

This represents completeness of the requirement

CMP=NARS –N IR

CMP=Completeness of the system

NARS=No. of Actual / original requirement in
the system

NIR =Number of Incomplete Requirement in
the system

Clarity

This represents clarity of the system.

CL=NARS –N IR-UCLR

CL=Clarity of the system

NARS=No. of Actual / original requirement in
the system

NIR =Number of Incomplete Requirement in
the system

UCLR=No. of Unclear requirements

Feasibility

This represents feasibility of the system.

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 4

FR=IFR -UCLR

FR=Feasibility requirements of the system

IFR =Number of Infeasible Requirement in the

system

UCLR=No. of Unclear requirements

Precedent

This represents precedent of the system.

PR=CMP+CL+FR

PR=Precedent requirements of the system

CMP =Completeness of the system

CL=Clarity of the system

FR=Feasibility of the system

5.RESULTS

Case Study: Flight Booking System

Here it is to identify, visualize and analyze the change

requirement traceability analysis on object-oriented software

system. Here, Flight Booking System case study has been

taken as a requirement. Based on the requirement level in, it is
to split requirement into different requirement types

1. Stakeholders need

2. Feature

3. Use Case

4. Supplementary Requirement

5. Test Cases

6. Scenarios

1.The requirements at the top level of the levels

(stakeholders’ requests) are gathered using various methods

of knowledge elicitation:

• Interviews

• Questionnaires

• Workshops

• Storyboards

• Role playing

• Brainstorming sessions

• Prototyping

• Use cases

• Analysis of existing documents

• Observation, task demonstration

• Analysis of existing systems

2. A business analyst derives the second level of the levels

(features) from stakeholders’ requests by cleaning the

requirements and translating them from the problem domain

to the solution domain. The features should have all the

attributes of a good requirement:

• Unambiguous

• Testable (verifiable)

• Clear (concise, terse, simple, precise)

• Correct

• Understandable

• Feasible (realistic, possible)

• Independent

• Atomic

• Necessary

• Implementation-free (abstract)

• Consistent

• Non-redundant

• Complete

To fix the requirements that are missing at least one of these

attributes, which can apply some of the following

transformations:

• Copy

• Split

• Clarification

• Qualification

• Combination

• Generalization

• Cancellation

• Completion

• Correction

• Unification

• Adding details

3. The third layer of the levels contains use cases and

supplementary requirements. Use cases capture functional

requirements. Creation of use cases consists of the following

steps:

1. Identify actors.

2. Identify use cases.

3. Design the initial use case model.

4. Structure the model.

5. Create use case documents.

4. Supplementary requirements capture mostly nonfunctional

requirements. They may also capture some generic functional

requirements not associated with any specific use cases.

Supplementary requirements can be classified as follows:

• Functionality

• Usability (accessibility, aesthetics, user interface

consistency, ergonomics, ease of use)

• Reliability (availability, robustness, accuracy,

recoverability, fault tolerance, safety,

security, correctness)

• Performance (throughput, response time, recovery time,

startup/shutdown time,

capacity, utilization of resources)

• Supportability (testability, adaptability, maintainability,

compatibility, configurability, Upgradeability, install ability,

scalability, portability, reusability, interoperability,

Compliance, replace ability, changeability, analyzability,

audit ability, localizability)

• Design constraints

• Implementation requirements

• Interface requirements

• Physical requirements

• Documentation requirements

• Licensing and legal requirements

5. Test cases are created to test the requirements from the

third level. The following steps are used to derive test cases

from use cases:

 Create scenarios.

 Identify variables for each use case step

 Identify significantly different options for each variable

 Combine options to be tested into test cases

 Assign values to variables

6. To create test cases from supplementary requirements, you

can use one of the following approaches:

• Execute selected functional test cases in different

environments

• Add checks to all use cases

• Check and modify a specific use case

• Perform the exercise

• Checklist

• Analysis

• White-box testing
• Automated testing

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 5

7. Design diagrams are also derived from the requirements on

the third level, especially Use cases. Here are the possible

approaches:

• Design classes that will capture required data and

functionality

• Create one sequence diagram for each scenario

• Simultaneously add required methods and attributes to the

classes on the class Diagrams

8. Documentation is created from various elements of the
levels.

Algorithms for ‘Book a Flight’

Step 1: Begin Algorithm

Step 2: Enter URL

Step 3: Enter flight data search flights

Step 4: Select a flight

Step 5: System Display return flights

Step 6: System Display details of flights

Step 7: Confirm the flight

Step 8: New User Register

Step 9: Login

Step 10: Provide passenger information

Step 11: Display available seats

Step 12: Select Seats

Step 13: Enter Billing information

Step 14 : Provide confirmation number

Step 15: End algorithm

Use Cases

Figure 1.1 An ACTOR and a use case

Figure 1.2 Use case Initiated by Travelers and User

Figure 1.3 A Context diagram for the Use case book a

flight

Traceability Structure

Figure 1.4 shows traceability structure in this case study

Figure 1.4 Traceability structure for case study “Book a

Flight”

• Stakeholder Requests (STRQ) will be traced to Features

(FEAT) defined in the Vision document and supplementary

Requirements defined in the Supplementary Specification.

There may be a many-to-many relationship between STRQ

and FEAT, but usually it is one Stakeholder Request to many

Features. Every approved Request must trace to at least one

Feature or Supplementary Requirement.

• Feature Requirements (FEAT) (defined in the Vision

document) will be traced to either a Use Case or

Supplementary Requirement. Every approved feature must

trace to at least one Use Case or Supplementary

Requirement. There may be many-to-many relationships

between Features and Use Cases and Supplementary

Requirements.

• Use Case Requirements (UC) defined in the Use Case

Specifications will be traced back to Features.

• Supplementary Requirements (SUPL) will be traced back to
Features.

Object Oriented System Design from Use Cases

Figure 1.5 A class diagram showing classes that implement

the functionality of a basic flow of the Book a flight use case.

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 6

Figure 1.6 Class Reservation and related classes

6.CONCLUSION

The Change requirement traceability of a case study

“book a flight” requirement provides an object oriented

approach architecture till a class diagram. The object oriented

analysis has been done for the case study, “book a flight” and

arrived at a class diagram by using ‘use cases’ and arrived at

an algorithm for “book a flight’ case study. The proposed

analysis is highly dependent on a very well defined software

requirements specification and non-functional traceable

requirement. Further based on change in the requirements the

impact on the class diagram till test case attributes can be

identified. Based on the requirement traceability which test

cases must be changed can be identified and also impact of

object-oriented paradigms can be analyzed.

7. REFERENCES

[1]. Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, (1991),

Fundamentals of Software Engineering, Prentice Hall

Publishing.

[2]. Chandra Shrivastava, D. L. Carver, "Using Low-Level

Software Architecture for Software Maintenance of

Object-Oriented Systems", Proceedings of the 1995

Software Engineering Forum, Boca Raton, FL,

November (1995), pp. 31-40.

[3]. Chen. X., Tsai. W., Hunag. H., Poonawala. M.,

Rayadurgam. S., Wang. Y., (1996), Omega-an

Integrated Environment for C++ Program Maintenance,

Proceedings of the International conference on software

Maintenance, pp.114-123.

[4]. Li.,L.,Offutt,A.J., (1996), Algorithmic Analysis of the

Impact of Changes to Object-oriented Software,

Proceedings of the International Conference on

Software Maintenance, pp. 171-184.

[5]. Gallangher, K., (1996), Visual Impact Analysis,

Proceedings of the International Conference on

Software Maintenance, pp. 52-58.

[6]. Hutchins,M., Gallagher,K., (1996) Improving Visual

Impact Analysis, Proceedings of the International

Conference on Software Maintenance, pp.294-301.

[7]. Bohner.S.A.,(2002). Software change impacts–an

 evolving perspective, Proceedings of the International

Conference on Software maintenance, pp 263 – 272.

[8]. Pressman. (2004) A Dynamic Analysis Approach

Concept Location. Technical report of Software

Engineering.

[9]. Suhaimi Bin Ibrahim (2006), A Document-Based

Software Traceability to Support Change Impact

Analysis of Object-Oriented Software, University

Teknologi Malaysia, Thesis, pp. 45-56.

[10].M.Z.Kurian and A S Manjunath (2007), Requirement

traceability and impact analysis methodology to

evaluate software requirements changes, National

Conference on Trends in Advanced Computing, at

DMCE,Airoli,Navi Mumbai,28-29

[11].Ali R. Sharafat and Ladan Tahvildari (2008), Change

Prediction in Object- Oriented Software Systems: A

Probabilistic Approach, Journal of Software, Vol. 3, No.

5, pp.10-38.

[12].Peter Zielczynski, (2013) IBM, Requirements

Manangement Using IBM Rational Requisite Pro.

[13].Francisco A C Pincher, Requirement traceability

Technical Report, University of Brasilia, (2000)

[14]. Gotel O.C.Z and Finkelstein ACW. An analysis of the

requirements traceability problem. Proceedings of

ICRE94, 1st Internation conference on requirements

engineering, 1994, Colorado springs Co, IEEE CS Press

(1994).

 [15].Haumer P ., Pohl K., Weidenhaupt K and Jarke M .

Improving reviews by extended traceability.

Proceedings of 32nd Hawaii International Conference on

system sciences volume 3; (1999), January 05-08; Maui,

Hawaii.

[16]. Smith t,T J READS: A requirements engineering tool.

Proceedings of RE’93, International Symposium on

Requirements Engineering; 1993, January 4-6; san

Diego,C.A. Los Alamitos,CA,IEEE Computer

Society,(1993).

[17].Yu W.D. Verifying software requirements – a

requirement tracing methodology and its software tool –

RADIX, IEEE Journal on Selected Areas of

Communication (1994);12(2):234-240.

.

[18]. Sarah Maadawy and Akram Salah, Measuring Change

Complexity from Requirements: A proposed

methodology, IMACST Volume 3, Number ,Feburary

(2012).

http://www.ijcrd.com/
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Carlo+Ghezzi%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Mehdi+Jazayeri%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Dino+Mandrioli%22

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 3; March-2014

 www.ijcrd.com Page 7

Asst. Prof. Sunil T D received

Bachelor Degree from Bangalore

University in Electronics and Post

graduate degree in Electronics

from Visvesvaraya Technological

University at BMSCE, Bangalore

and Pursuing Ph.D degree in

Software Engineering from

VTU, Belgaum, Karnataka, India.

Having 12 Years of Teaching experience in the field

of Electronics & Communication Engineering. Published

several papers in peer reviewed international journals,

and several conference papers.

Dr M.Z.Kurian received his

Bachelor Degree from Bangalore

University and Post graduate

degree in Industrial Electronics

from Mysore University, and

Ph.D degree in Software

Engineering from Dr.MGR

University, Chennai, Tamil Nadu,

India. He has more than 30

Years of Teaching experience in the field of Electronics

& Communication Engineering. Published several papers

in peer reviewed international journals including IEEE,

and several conference papers.

http://www.ijcrd.com/

