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ABSTRACT-Storage area networks are used in government 

and industry to store large amount of data while assuring 

availability and access to that data and security. In order to 

protect “data-at-rest” in storage area networks from the risk 

of differential power analysis attacks without degrading 

performance, a high-throughput masked advanced 

encryption standard (AES) engine is proposed. However, 

this engine usually adopts the unrolling technique which 

requires extremely large field programmable gate array 

(FPGA) resources, high computational time. This research 

work aims to optimize the area with reduce computation 

time and high throughput for a masked AES with an 

unrolled structure. This is achieved by mapping its 

operations from GF(2
8
) to GF(2

4
) as much as possible. The 

number of mapping GF(2
8
) to GF(2

4
) and inverse mapping 

GF(2
8
) operations of the masked SubBytes step are reduced 

from ten to one. In order to be compatible, the masked 

MixColumns, masked AddRoundKey, and masked 

ShiftRows including the redundant masking values are 

carried over GF(2
4
). Masking and mapping techniques 

increases computational time which leads to usage of 

pipelining techniques to reduce the computational time. A 

FPGA block RAM (BRAM) is used to further reduce 

hardware resources.  

     Keywords: Advanced Encryption Standards (AES), 

Differential Power Analysis (DPA), Field Programmable Gate 

Array (FPGA), Masking, Storage Area Network (SAN). 

 

1. INTRODUCTION 
 

Securing data from accidental or malicious disclosure, whether 

it is data-in-transit or data-at-rest, is critical to the mission of any 

organization. SAN security should be carefully considered and 

then implemented in accord with all applicable security policies. 

One important type of SAN is the Fibre Channel SAN used for 

the rapid transfer of data between servers and FC storage 

devices via FC switches. Information should be 

cryptographically protected in SANs when it is at rest on a FC 

storage devices, To protect data-in-transit encrypt data-in-transit 

and all communication between FC devices. To protect data-at-

rest the data should be encrypted before arriving at its destined 

storage device. This requires the use of special purpose 

appliances that can encrypt the data that is being sent to a 

storage device. These applications need not only the protection 

at both the protocol level and the physical level but also high-

throughput implementation. For Example, it needs upto 40 

Gbit/s throughput for a four port host bus adapter connected by 

fiber cables. The information leakage includes power 

consumption, timing and fault detection. 

    In 1999, Kocher et al. first broke the normal advanced 

encryption standard (AES) by means of power analysis attacks. 

Later, the differential power analysis (DPA) attack was further 

developed as  one of the most promising power analysis attacks. 

From then on, numerous efforts have been devoted to the 

development of efficient countermeasures for the AES 

implementations against DPA attacks. Two representatives are 

the multiplicative masking and the Boolean masking. They both 

try to remove the correlation between the power consumption 

and the secret keys. The multiplicative masking can be realized 

by using either standard CMOS cells at the gate level  or 

nonstandard CMOS cells. On the other hand, the Boolean 

masking can be easily realized at the algorithmic level and is 

immune to DPA and glitch attacks. The Boolean masking has 

the advantage of easy implementation because it does not need 

extra specific hardware.  The Boolean masking is a good 

candidate to be applied to the AES in SANs, but if we directly 

apply it to the AES, one masked AES S-box over GF(2
8
) with 

two 8-bit input and output mask needs to store GF(2
8
) to GF(2

4
). 

Therefore, for a whole 128-bit masked AES with unrolled 

architecture, it needs to store around 2952.8 Mbytes. This is too 

big to be fit into any FPGA. 

    In this paper, we develop mapping technique to perform the 

masked AES mainly over GF(2
4
). In addition we map masked 

S-box onto block RAM which reduces area. We use pipelining 

technique in order to meet the throughput of high throughput for 

SANs. We also perform masked AES in different modes of 

operation. Finally we compare all the techniques used to develop 

masked AES and conclude accordingly. 

 

2. LITERATURE SURVEY 
 

To carry out this research work, a thorough literature survey was 

done. It has been briefly explained in this section. In this paper 

“Efficient implementation of Rijndael encryption in 

reconfigurable hardware: Improvements and design tradeoffs,” 

2003[6], performance evaluation of the Advanced Encryption 

Standard candidates has led to intensive study of both hardware 

and software implementations. However, although plentiful 

papers present various implementation results, it seems that 

efficiency could still be greatly improved by applying good 

design rules adapted to devices and algorithms. This paper 

addresses various approaches for efficient FPGA 

implementations of the Advanced Encryption Standard 

algorithm. As different applications of the AES algorithm may 

require different speed/area tradeoffs, we propose a rigorous 

study of the possible implementation schemes, but also discuss 

design methodology and algorithmic optimization in order to 

improve previously reported results. In the paper “A 21.54 

Gbits/s fully pipelined processor on FPGA,” 2004[10] presents 

the architecture of a fully pipelined AES encryption processor 
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on a single chip FPGA. By using loop unrolling and inner-round 

and outer-round pipelining techniques, a maximum throughput 

of 21.54 Gbits/s is achieved. A fast and an area efficient 

composite field implementation of the byte substitution phase is 

designed using an optimum number of pipeline stages for FPGA 

implementation. A 21.54 Gbits/s throughput is achieved using 

84 block RAMs and 5177 slices of a VirtexII-Pro FPGA with a 

latency of 31 cycles and throughput per area rate of 4.2 

Mbps/Slice. [11] “Successfully attacking masked AES hardware 

implementations,” 2005. During the last years, several masking 

schemes for AES have been proposed to secure hardware 

implementations against DPA attacks. In order to investigate the 

effectiveness of these countermeasures in practice, we have 

designed and manufactured an ASIC. The chip features an 

unmasked and two masked. It turns out that masking the AES S-

Boxes does not prevent DPA attacks, if glitches occur in the 

circuit. In the paper “A side-channel analysis resistant 

description of the AES S-box,” 2005[12] presents efficient 

algorithmic countermeasures to secure the AES algorithm 

against (first-order) differential side-channel attacks which has 

been very expensive to implement. In this article, we introduce a 

new masking countermeasure which is not only secure against 

first-order side-channel attacks, but which also leads to 

relatively small implementations compared to other masking 

schemes implemented in dedicated hardware. Our approach is 

based on shifting the computation of the finite field inversion in 

the AES S-box down to GF(2
4
).  

 

3. EXISTING METHODS 
3.1 AES  
 

       AES has been adopted by the U.S. government and is now 

used worldwide. It supersedes the Data Encryption Standard 

(DES), which was published in 1977. The algorithm described 

by AES is a symmetric-key algorithm, meaning the same key is 

used for both encrypting and decrypting the data. AES is based 

on a design principle known as a substitution-permutation 

network, and is fast in both software and hardware. Unlike its 

predecessor DES, AES does not use a Feistel network. The basic 

information unit for treatment in the AES algorithm is a series of 

eight bits processes considered as a single unit. The bit series 

corresponding to the input, the output and the cipher key are 

processed as arrays of bytes; called State. The State array 

consists of four columns of bytes, and every column contains 4 

bytes.  The AES algorithm operates in rounds and support three 

different key lengths, 128, 192, and 256 bits; the standard will 

consider only 128-bit as legal block length. The number of these 

rounds is chosen depending on the key size. In fact, for a key 

length equal to 128, 192 or 265 the number of rounds is equal to 

10, 12 and 14, respectively. i.e.,10 cycles of repetition for 128-

bit keys, 12 cycles of repetition for 192-bit keys, 14 cycles of 

repetition for 256-bit keys. 

 

3.2. Masked AES WITH 6 PIPELINE STAGES 
 

In a masked AES, a random mask is added to the input data of 

the algorithm prior to encryption. At the end of the encryption, 

the mask is removed to get the correct result. In order to remove 

the mask, we need to keep track how the mask is modified by 

the algorithm. Figure 2.1 shows this basic principle add random 

mask remove random mask Masked Algorithm Plaintext Cipher 

text Mask Modification Random Mask Cipher Key Figure 2.1. 

Basic masking principle masking the linear AES functions is 

easy. Because these functions are linear, applying them on a 

masked value A+ X, gives the same result as applying them first 

on the data A and then on the mask X: f (A+X) = f (A)+ f (X).  

         
Fig 2.1 Basic Masking Principle 

 

The SubBytes transformation is composed of a multiplicative 

inversion in GF(  ) and an affine transformation. Masking the 

non-linear byte inversion is tricky because Inv(A+X)   

Inv(A)+Inv(X). Without modification, the result of the byte 

inversion is (   )   and thus it is not possible to remove the 

mask at the end of the algorithm easily. Therefore, a modified 

byte inversion is required such that the result of the inversion 

equals     +X. Multiplicative masking, which was presented by 

Akkar et al., is based on the idea that prior to the byte inversion 

the additive mask X is replaced by the multiplicative mask Y. 

After the byte inversion, the multiplicative mask is replaced by 

the additive mask again. As it can be seen in Figure 2.2, 

SubBytesAkkar requires four multipliers, two inversions and 

two additions in GF(  ). Therefore, it is already clear that 

masking leads to a noticeable increase in terms of area viewed 

as a multiplication by a particular MDS matrix in a finite field.  

 

 
Fig 2.2 Modified Byte Inversion SubByteAkkar[7] 

 

    The Boolean masking is a good candidate to be applied to the 

AES in SANs, but if it is directly applied to the AES, one 
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masked AES’s S-box over GF(  ) with two 8-bit input and 

output masks needs to store 28 × 28 × 256 bytes (16.8 Mbytes). 

Therefore, for a whole 128-bit masked AES with an unrolled 

architecture, it needs to store around 2952.8Mbytes. This is too 

big to be fit into any field programmable gate array (FPGA). To 

have a feasible FPGA implementation, one possible way is to 

transform the S-box computation of a masked AES from GF(  ) 

to GF(  ).  

     Techniques to optimize the area of a masked AES for SANs 

are developed and the masked AES mainly over GF(  ) are 

performed, and the related operations like the masked 

MixColumns, masked AddRoundKey, and masked ShiftRows 

including redundant masking values are all calculated over 

GF(24). Therefore, there is only need to transform the input 

values from GF (  ) to GF(  ) and transform the output values 

back from GF(  ) to GF(  ) once.  

    In the Boolean masking implementation, the intermediate 

value x is concealed by exclusive ORing it with the random 

mask m. In the round function of the AES, ShiftRows, 

MixColumns, and AddRoundKey are linear transformations, 

while SubBytes is the only nonlinear transformation of the AES. 

We define the linear transformations as Oper; then, the masked 

Oper can be written as Oper(x ⊕ m)=Oper(x) ⊕ Oper(m). 

However, the masked nonlinear transformation SubBytes has the 

characteristic as S-box(x ⊕ m)’ = S-box(x) ⊕ S-box(m). In 

order to mask the nonlinear transformation, a new S-box, 

denoted as S-box’, is recomputed as S-box (x ⊕ m) = S-box(x) 

⊕ m, where m and m’ are the input and output masks of 

SubBytes. Usually, throughputs can be significantly improved 

by inserting pipeline registers for latency careless designs. For 

each masked AES’s round, six-stage pipelines are inserted to 

enhance the throughputs. Three pipelines to each round of the 

masked AES, called outer three pipelines, are inserted as shown 

in Fig. 1. The pipeline registers are inserted at the output of each 

transformation. Note that the maximum pipelined stages for our 

proposed design is six. In order to be compatible with the 

encryption procedure, six-stage pipelines are inserted to the key 

expansion in order not to affect the critical path of the main 

encryption. 

 

4.  PROPOSED MASKED AES METHODS 

WITH UNROLLED ARCHITECTURE & 

PIPELINING TECHNIQUE 
 

4.1 Masked AES with reduced computation time 
Techniques have been generated to reduce the computation time 

using 10 pipeline stages with the trade-off with area. Using 10 

pipeline stages greatly reduces the computation time but the area 

is increased as compared to 6 pipeline stage technique. Another 

method is to reduce the shift row operation and mix column 

without any effects on security.  

 

4.2. Masked AES in CBC and PCBC mode 

CIPHER-BLOCK CHAINING (CBC) 

In CBC mode, each block of plaintext is XORed with the 

previous ciphertext block before being encrypted. This way, 

each ciphertext block depends on all plaintext blocks processed 

up to that point. To make each message unique, an initialization 

vector must be used in the first block. If the first block has index 

1, the mathematical formula for CBC encryption is 

Ci = Ek ( Pi + Ci-1), C0 = IV 

 
Fig.1 Proposed masked AES with an unrolled architecture of 

Masked AES with pipelining technique 

 

while the mathematical formula for CBC decryption is 

Pi = Dk (Ci) + Ci-1, C0 = IV 

 
Fig. 4.1 Cipher block chaining mode encryption [7] 

CBC has been the most commonly used mode of operation. Its 

main drawbacks are that encryption is sequential (i.e., it cannot 

be parallelized), and that the message must be padded to a 

multiple of the cipher block size. One way to handle this last 

issue is through the method known as cipher text stealing. Note 

http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Ciphertext_stealing
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that a one-bit change in a plaintext or IV affects all following 

cipher text blocks. Decrypting with the incorrect IV causes the 

first block of plaintext to be corrupt but subsequent plaintext 

blocks will be correct. This is because a plaintext block can be 

recovered from two adjacent blocks of cipher text. As a 

consequence, decryption can be parallelized. Note that a one-bit 

change to the cipher text causes complete corruption of the 

corresponding block of plaintext, and inverts the corresponding 

bit in the following block of plaintext, but the rest of the blocks 

remain intact. 

 

PROPAGATING CIPHER-BLOCK CHAINING 

(PCBC) 

 
Fig. 4.2 Propagating Cipher block chaining mode encryption [7] 

 

The propagating cipher-block chaining or plaintext cipher-block 

chaining mode was designed to cause small changes in the 

ciphertext to propagate indefinitely when decrypting, as well as 

when encrypting. 

 
Fig. 4 Proposed masked AES with an unrolled architecture in 

CBC mode and PCBC mode 

4.3 Masked AES in CBF and OBF mode 
 

CIPHER FEEDBACK MODE (CFB) 
   

   The cipher feedback (CFB) mode, a close relative of CBC, 

makes a block cipher into a self-synchronizing stream cipher. 

Operation is very similar; in particular, CFB decryption is 

almost identical to CBC encryption performed in reverse: 

 

Ci = Ek (Ci-1) Pi , Pi = Ek (Ci-1) Ci , C0 = IV 

 
Fig 4.3 Cipher Feedback Mode Encryption 

 

This simplest way of using CFB described above is not any 

more self-synchronizing than other cipher modes like CBC. If a 

whole blocksize of ciphertext is lost both CBC and CFB will 

synchronize, but losing only a single byte or bit will 

permanently throw off decryption. To be able to synchronize 

after the loss of only a single byte or bit, a single byte or bit 

must be encrypted at a time. CFB can be used this way when 

combined with a shift register as the input for the block cipher. 

To use CFB to make a self-synchronizing stream cipher that will 

synchronize for any multiple of x bits lost, start by initializing a 

shift register the size of the block size with the initialization 

vector. This is encrypted with the block cipher, and the highest x 

bits of the result are XORed with x bits of the plaintext to 

produce x bits of ciphertext. These x bits of output are shifted 

into the shift register, and the process repeats with the next x bits 

of plaintext. Decryption is similar, start with the initialization 

vector, encrypt, and XOR the high bits of the result with x bits 

of the ciphertext to produce x bits of plaintext. Then shift the x 

bits of the ciphertext into the shift register. This way of 

proceeding is known as CFB-8 or CFB-1 (according to the size 

of the shifting). If x bits are lost from the ciphertext, the cipher 

will output incorrect plaintext until the shift register once again 

equals a state it held while encrypting, at which point the cipher 

has resynchronized. This will result in at most one blocksize of 

output being garbled. Like CBC mode, changes in the plaintext 

propagate forever in the ciphertext, and encryption cannot be 

parallelized. Also like CBC, decryption can be parallelized. 

When decrypting, a one-bit change in the ciphertext affects two 

plaintext blocks: a one-bit change in the corresponding plaintext 

block, and complete corruption of the following plaintext block. 

Later plaintext blocks are decrypted normally. CFB shares two 

advantages over CBC mode with the stream cipher modes OFB 

and CTR: the block cipher is only ever used in the encrypting 

direction, and the message does not need to be padded to a 

multiple of the cipher block size (though ciphertext stealing can 

also be used to make padding unnecessary). 

OUTPUT FEEDBACK MODE (OFB) 

 

        The output feedback (OFB) mode makes a block cipher 

into a synchronous stream cipher. It generates keystream blocks, 

which are then XORed with the plaintext blocks to get the 

ciphertext. Just as with other stream ciphers, flipping a bit in the 

ciphertext produces a flipped bit in the plaintext at the same 
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location. This property allows many error correcting codes to 

function normally even when applied before encryption. 

Because of the symmetry of the XOR operation, encryption and 

decryption are exactly the same: 

Cj = Pj + Oj , Pj = Cj + Oj , Oj = Ek (Ij) 

Ij =Oj-1 , I0= IV 

 

Fig 4.4 Output Feedback Mode Encryption 

 

        Each output feedback block cipher operation depends on all 

previous ones, and so cannot be performed in parallel. However, 

because the plaintext or ciphertext is only used for the final 

XOR, the block cipher operations may be performed in advance, 

allowing the final step to be performed in parallel once the 

plaintext or ciphertext is available. It is possible to obtain an 

OFB mode keystream by using CBC mode with a constant string 

of zeroes as input. This can be useful, because it allows the 

usage of fast hardware implementations of CBC mode for OFB 

mode encryption. Using OFB mode with a partial block as 

feedback like CFB mode reduces the average cycle length by a 

factor of 2^{32} or more.  

                 

5. PROPOSED MASKED AES FOR 

UNROLLED STRUCTURE 

In the Boolean masking implementation, the intermediate value 

x is concealed by exclusive- ORing it with the random mask m. 

In the round function of the AES, Shift Rows, Mix- Columns, 

and AddRoundKey are linear transformations, while Sub Bytes 

is the 

 

 
.    Fig. 4 Proposed masked AES with an unrolled architecture in 

CBF mode and OBF mode 

                

only nonlinear transformation of the AES. The linear 

transformations are defined as Oper; then, the masked Oper can 

be written as Oper(x ⊕ m) = Oper(x) ⊕ Oper(m). However, the 

masked nonlinear transformation Sub Bytes has the 

characteristic as S-box(x ⊕ m) ≠ S-box(x) ⊕ S-box (m). In 

order to mask the nonlinear transformation, a new S-box, 

denoted as S-box’ is recomputed as S-box’ (x ⊕ m) = S-box(x) 

⊕ m’, where m and m’ are the input and output masks of Sub 

Bytes. To mask a 128-bit AES, it usually needs 6-byte random 

values. These 6 values are defined as m, m’, m1, m2, m3, and 

m4. For simplicity,       = {m1, m2,m3,m4} is defined as the 

mask for one 32-bitMixColumns transformation, and it also 

holds that       = MixColumns(     ). The field GF(  ) is an 

extension of the field GF(  ), over which to perform a modular 

reduction needs an irreducible polynomial of degree 2,    + {1}x 

+ {e}, and another irreducible polynomial of degree 4,    + x + 

1. In order to reduce the hardware resources, the masked AES 

engine is calculated mainly over GF(  ). Fig. 1 shows the 

proposed masked AES, which moves the mapping and inverse 

mapping outside the AES’s round functions. The plaintext and 

the masking values are mapped once from GF(  ) to GF(  ), 

and all the intermediate operations are computed over GF(  ). 

Finally, the ciphertext is mapped back from GF(  ) to the 

original field GF(  ). All the masking values need to be 

mapped from GF(  ) to GF(  ), and     = map(m),      = 

map(m’),          = map(     ), and         
  = map(      ).  

 

5.1 Optimized Masked S-Box over GF (  ) 
 

    In order to move the mapping and inverse mapping outside 

AES’s round operation, we exchange the computational 

sequence of masked affine and inverse mapping functions within 

masked S-box. The masked affine function needs to be adjusted 

with new scaling factors. In Fig. 1 map operation is the mapping 

transformation of 8 × 8 matrix, and map−1 is constructed by the 

inverse map operation. The input values of the map function are 

(z + m) and m, and the output values of the map function are (z + 

m)’ and m’, where {(z + m),m} ϵ GF(  ) and {(z + m)_,m_} ϵ 

GF(24). It holds that  

(z + m + m)’ = map (z + m + m)  (1) 

where (z + m)’ = {  
  + mh,  

  + ml} and m’ = {  ,  }. maffine 

and maffine’ are needed for scaling the output values and the 

output masking values. The following steps introduce the 

procedure to obtain the scaling values.  

The normal affine function (Ax + b) can be applied to the left 

and the right sides of (1) as 

A(z+m+m) + B = A map’ (z+m+m)’ + B                 (2) 

When mapping Equation (2) from GF(  ) to GF(  ),  

map (A(z+m+m) + B) = map (A map’ (z+m+m)’ + B)            (3)  

map (A(z+m) + B) + map Am = map A map’ (z+m+)’ + map B 

+ map A map’ m’                                                                      (4) 

Therefore we deduce that , 

Maffine = map A map’ (z+m+)’ + map B + map A map’ m’ 

Therefore, maffine =           + mapb and maffine’= 

         .  



International Journal of Combined Research & Development (IJCRD)                        

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014 
 

 www.ijcrd.com Page 39 
 

 

6. RESULT 
 

 In this section, I have implemented the proposed design and 

synthesized the design using Xilinx ISE 13.1 Virtex-6 

XC6VLX240T platform. The table shows the comparison 

between different AES techniques for storage of data in 

network. In order to have fair comparison, I also implement the 

masked AES design using Oswalds masked S-Box with non-

pipelined and 6- stages pipelined unrolled structure and basic 

iterative unprotective AES method. The.proposed masked AES 

is implemented in CBC and PCBC mode, CBF and OFB to 

achieve further more security. 

7. CONCLUSION 

High throughput is an important factor for large data 

transformation systems in SANs. In this brief, an LUT-based 

masked S-box has been proposed to construct the DPA-resistant 

design with acceptable area on FPGA. The proposed masked 

AES only needs to map the plaintext and masking values from 

GF(2
8
) to GF(2

4
) once at the beginning of the operation and 

map the ciphertext back from GF(2
4
) to GF(2

8
) once at the end 

of the operation. Therefore, by moving the mapping and inverse 

mapping outside the masked AES’s round function, we can 

reduce area resources. We also map some parts of the masked S-

box onto BRAM which further reduces area resources. We also 

reduce shift rows operation to increase the computational time 

without any effect to the security. We achieve 2.953Gbits/s 

throughput for the proposed masked AES. Finally, the proposed 

masked AES is implemented in CBC mode to achieve more 

security. 

TABLE 1. RESULTS OF DIFFERENT AES  
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METHODS 

 

TECHNIQUES 

 

AREA 

(SLICES) 

 

Computational   

Time 

 

Throughput 

(Gbit/sec) 

 

Security 

 

 

 

EXISTING 

METHODS 

 

Unprotected AES 

 

6985 

 

100ns 

 

1.28 

 

LOW 

 

Masked AES 

 

13677 

 

240ns 

 

0.533 

 

HIGH 

 

Masked AES with Pipelining 

 

10345 

 

130ns 

 

2.953 

 

HIGH 

 

 

 

 

 

PROPOSED 

METHODS 

 

Masked AES in CBC mode 

 

12678 

 

150ns 

 

2.56 

 

VERY HIGH 

 

Masked AES in PCBC mode 

 

12451 

 

150ns 

 

2.56 

 

VERY HIGH 

 

Masked AES in CBF mode 

 

11456 

 

140ns 

 

0.914 

 

VERY HIGH 

 

Masked AES in OFB mode 

 

10967 

 

140ns 

 

0.914 

 

VERY HIGH 
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