
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 13

ABSTRACTION OF GRAMMAR AND PARSE TREE FROM THE

INPUT STRING

Dr.R N Kulkarni
Dept. of CSE

BITM Bellary

m_kulkarni@rediffmail.com

Ashwini B Shiraguppi

Dept. of CSE

BITM Bellary

ashubs005@gmail.com

 Arpitha D
Dept. of CSE

BITM Bellary

dsl.arpitha@gmail.com

Mustour Shruthi

Dept. of CSE
BITM Bellary

logon2shruthi@gmail.com

Abstract :
 In the field of compiler

design grammars plays a vital role. The

grammar allows us to write a computer

program to determine whether a string of

statement is syntactically correct in the

programming language or not. Different

authors feels that natural language such

as English could be analyzed as precisely,

because the programs what we write

consists of English statements. The use of

Context Free Grammars (CFGs) for

syntax definition is increased as it is used

for verifying the syntax of computer

programming language.In this paper, we

are proposing a automated methodology

for the abstraction the required string from

the input and then draw parse tree for the

generated string.

Keywords: Context Free Grammar,

ambiguous, Parse tree.

1. INTRODUCTION:

In the field of compiler design

grammars play a vital role. The grammar

allows us to write a computer program to

determine whether a string of statements is

syntactically correct in the programming

language. Many people would wish that

natural languages such as English could be

analyzed as precisely, that we could write

computer programs to tell which English

sentences are grammatically correct.The

use of Context Free Grammars (CFGs) for

syntax definition is already widespread

and keeps growing. Primarily, Context

Free Grammar or CFG used to build

compilers to verify the syntax of computer

programming language. There is no tool

available where we can extract the parse

tree and unambiguous grammar by giving

the grammar and string.

1.1 Literature Survey

The paper [1] discusses about the

way of verifying a grammar is the

detection of ambiguities. Author discuss

about a different methods of testing the

ambiguity of the grammar: the derivation

generator AMBER, the LR(k) test and the

Non-canonical Un-ambiguity test. The

proposed tool in [1] is referred to as

derivation generator which derives the

derivation sequence. The paper [2] discuss

about the language model presented by

Comosky, degree of ambiguity and

comparisons of existing methods and

recent trends.

The paper [3] discusses the new

algorithm to detect ambiguity in character

level grammar. The new method showed

that the time taken by the ambiguity

detection algorithm for character level

mailto:m_kulkarni@rediffmail.com
mailto:ashubs005@gmail.com
mailto:dsl.arpitha@gmail.com
mailto:logon2shruthi@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 14

grammar for languages such as C and Java

is significantly reduced without any loss.

The paper [4] discusses about the

tool that pinpoints the possible ambiguities

in Context Free Grammars and this tool

implements a conservative algorithm [4]

which guarantees no ambiguity will be

overlooked.

The paper [5] discuss about grammar

which allows us to write a computer

program to determine whether a string of

statements is syntactically correct in the

programming language

The authors in [6, 7, 8] discuss about basic

ideas of grammars and formal properties

of Context-Free Grammar, techniques to

resolve ambiguous grammar and

introduces many of important concept

about ambiguous and unambiguous

grammar, parse tree, illustrates the key

theoretical concepts of Compilers and its

phases. The basic Notations and concepts

of Grammars and languages [8] gives

detailed description of syntax-directed

translation using LL(1) Grammars. The

link [9] discuss about the pictorial

representation of the parse tree.

In our proposed methodology we

are trying to identify first whether the

given grammar is ambiguous or

unambiguous. If it is ambiguous then we

convert it to unambiguous first and then

abstracts the required string and Generate

the parse tree by applying production rules

from the given Grammar.

2. TERMINOLOGY

2.1 Context free grammar: Context Free

Grammars are widely used for describing

formal languages including programming

languages. The CFGs includes ambiguous

grammars-those which can parse inputs in

more than one way. Context-free

grammars are simple enough to allow the

construction of efficient parsing

algorithms which, for a given string,

determine whether and how it can be

generated from the grammar [6].

2.2 Ambiguity: Ambiguity in context-

free grammars is a recurring problem in

language design and parser generation, as

well as in applications where grammars

are used as models of real-world physical

structures. Ambiguities are very hard to

detect by hand, so automated ambiguity

checkers are welcome tools [3].

2.3 Parse tree: The parse tree is a

concrete representation of the input. A

concrete syntax tree or parse tree or

parsing tree is an ordered, rooted tree that

represents the syntactic structure of a

string, according to some context-free

grammar. Parse trees are usually

constructed according to one of two

competing relations [9].

3. PROPOSED METHODOLOGY:

Proposed system explores Problem

of ambiguity, Approach to Detect

Ambiguity and deals with what

Ambiguous Grammar is and How to fix

them and then generate parse tree.

3.1 Ambiguity checking:

If grammar generates more than one parse

tree for the same string then the given

grammar is ambiguous.

3.1.1 Algorithm for checking ambiguity

Input: Grammar, String.

Output: Display the message ambiguous

or unambiguous.

Notations: N, T, P , S.
N Set of Non-terminal Symbols

represented in upper case letters.

T Set of terminal Symbols represented

in lower case letters.

P productions of grammar consists of :

(a) A non-terminal called head or left side

of the production.

(b) The symbol .

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 15

(c) A body or right side consisting of zero

or more terminals and non-terminals.

S Start symbol.

Step1: [Read Input]

Enter the input for N, T, P, S and

string.

Step2: [Deriving string]

From the Start symbol(S) derive the

string by using leftmost derivation.

Using Leftmost derivation replace

the Start symbol with one of its Production

body.

Step3: Repeat step2 until the string is

derived.

Step4: [Checking ambiguity]

If more than one derivation sequence

generated for the same input string

Then

Display given grammar is ambiguous

Otherwise

Display given grammar is

unambiguous.

Step5: End.

3.2 Conversion from ambiguous to

unambiguous
If the given grammar is ambiguous then
convert it into unambiguous grammar.

3.2.1 Algorithm for Converting

Ambiguous to Unambiguous

Input: Ambiguous grammar

Output: Unambiguous grammar.

Notations: E, T, F, id.

E Start symbol

T Term

F Factor

Id Identifiers

Step1: [Read the ambiguous grammar]

E->E+E|E*E|(E)|id

Step2: To eliminate ambiguity by

rewriting the Grammar.

By Enforces precedence of * over + and

Enforces left associativity of + and *

Step3: E represents expressions consisting

of terms separated by + signs, T represents

terms consisting of factors separated by *

signs and F represents factors that can be

either parenthesized expressions or

identifiers:

E->E+T|T

T->T*F|F

F->(E)|id

Step4: End.

3.3 Parse tree generation

If the given grammar is unambiguous

then it generates the parse tree.

3.3.1 Algorithm for generating parse

tree.
Input: String, Derivation sequence.
Output: Parse tree.

Notations: E, id.

E Start symbol

Id Identifiers

Step1:[Read Unambiguous grammar]
Take resulting grammar N, T, P, S

and string.

Step2: [Constructing parse tree]

Start symbol is labeled as root (E).

The next level of the parse tree can be

placed by one of its Production body.

The interior nodes of parse tree are labeled

by non-terminals.

The leaf nodes of parse tree are labeled by

terminals.

Yield of Parse tree is read from left to right
Step3: End.

4. CASE STUDY:

Algorithm:

Name: ambiguity checking
Input: grammar, string

Output: display the message ambiguous

or unambiguous.

Function:

Grammar: E->E+E|E*E|(E)|id

String: id * id + id.

Derivation1:

E->E + E
->E * E + E

->id * E+ E

->id * id+ E

->id * id + id

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 16

E

E + E

E * E id

Id E

id

Parse tree yields: id*id +id

Derivation2:

E->E * E

->id * E

->id * E + E

->id * id + E

->id * id + id

E

E * E

Id E + E

Id E

id

Parse tree yields: id*id +id

5. CONCLUSION:

In this paper, we proposed an

automated methodology that abstracts the

parse tree from the given grammar. The

proposed methodology is carried out by

applying a series of steps to the input

string. The methodology is tested for its

correctness and completeness.

6. REFERENCE:

[1] The Usability of Ambiguity

Detection Methods for Context-
Free Grammars by H.J.S. Basten.
Electronic Notes in Theoretical
Computer Science 238(2009) 35-
46.

[2] Advances in Ambiguity Detection
Methods for Formal Grammars by
Hari Mohan Pandey. In
International Conference on

Advances in Engineering © 2011
Published by Elsevier Ltd.
Selection and/or peer-review under
responsibility of ICAE 2011.

[3] Ambiguity detection:scaling to
scannerless by H.J.S.Basten,P.kint
and J.J.Vinju, pre-proceedings of
the 4

th
International conference on

software language engineering,
Braga, Portugal, july-2011.

[4] An Experimental Ambiguity
Detection Tool by Sylvain Schmitz
at Laboratoire I3S Electronic Notes
in Theoretical Computer Science
.203(2008)69-84.

[5] Formal Grammars and Languages
by Tao Jiang, Ming Li, Bala
Ravikumar and Kenneth W. Regan
Department of Computer Science

McMaster University Hamilton,
Ontario L8S 4K1, Canada

[6] Compiler Construction Principles
& Practice by Kennetch C Louden
.International student edition
Published by Vikas publishing
house.

[7] Compilers: Principles, Techniques
and Tools by Alfred V Aho, Ravi
Sethi, Jeffrey D. Ullman second
edition Published by Dorling
Kindersley(india) Pvt. Ltd
licensees of Pearson Education
2009.

[8] The theory and Practice of
complier writing International
Edition 1985 by Jean-Paul
Tremblay, Paul G.Sorenson
published by McGraw-Hill ISBN-
0-07-065161-2.

[9] Compilers CMPT 379 by Anoop

Sarka http://www.cs.sfu.ca/~anoop

http://www.cs.sfu.ca/~anoop

